Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T15:05:59.716Z Has data issue: false hasContentIssue false

Generalisation de la decomposition de kato aux opérateurs paranormaux et spectraux

Published online by Cambridge University Press:  18 May 2009

Mostafa Mbekhta*
Affiliation:
Département de Mathématiques, U.A. 168 au C.N.R.S., Université de Nice, Parc Valrose, F-06034 Nice Cedex
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dans tout ce qui suit, H désigne un espace de Hilbert séparable, A un opérateur fermé de domaine D(A) dans H, on note B(H) l'ensemble des opérateurs bornés de H dans lui-même et N(A), R(A) respectivement le noyau de A, l'image de A.

En 1958, T. Kato a démontré dans [7] le théorème suivant.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1987

References

1. Albrecht, E., A characterization of spectral operators on Hilbert spaces, Glasgow Math. J. 23 (1982), 9195.CrossRefGoogle Scholar
2. Apostol, C., Quasi-affine transform of quasinilpotent compact operators, Rev. Roumaine Math. Pures Appl. 21 (1976), 813816.Google Scholar
3. Colojoara, I. et Foias, C., Theory of generalized spectral operators (Gordon and Breach, New York, 1968).Google Scholar
4. Dunford, N. et Schwartz, J., Linear operators, Part III: Spectral operators(Wiley Interscience, New York, 1971).Google Scholar
5. Kaashoek, K. H. Forster et M. A., The asymptotic behaviour of the reduced minimum modulus of a Fredholm operator, Proc. Amer. Math. Soc. 49, (1975), 123131.Google Scholar
6. Goldberg, S., Unbounded linear operators (McGraw-Hill, New York, 1966).Google Scholar
7. Kato, T., Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261322.CrossRefGoogle Scholar
8. Labrousse, J. P., Les opérateurs quasi-Fredholm, Rend. Circ. Mat. Palermo (2) XXIX (1980), 161258 CrossRefGoogle Scholar
9. Mbekhta, M., Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux (Thèse 3ème cycle, Université de Nice, 1984)Google Scholar
10. Saphar, P., Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363384 CrossRefGoogle Scholar
11. Taylor, A., Introduction to functional analysis (Wiley, 1958)Google Scholar
12. Nashed, M. Z., Perturbations and approximations for generalized inverses and linear operator equations, Generalized inverses and applications, (Ed. Nashed, Z., Academic Press, 1976), 325396 CrossRefGoogle Scholar
13. Vasilescu, F. H., Analytic functional calculus and spectral decompositions (Reidel, 1982).Google Scholar
14. Vrbova, P., On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483492.CrossRefGoogle Scholar