Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T05:44:17.775Z Has data issue: false hasContentIssue false

FINITE GROUPS WITH THE SAME JOIN GRAPH AS A FINITE NILPOTENT GROUP

Published online by Cambridge University Press:  17 August 2020

ANDREA LUCCHINI*
Affiliation:
Dipartimento di Matematica “Tullio Levi-Civita”, Università degli Studi di Padova, Via Trieste 63, 35121Padova, Italy, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a finite group G, we denote by Δ(G) the graph whose vertices are the proper subgroups of G and in which two vertices H and K are joined by an edge if and only if G = ⟨H, K⟩. We prove that if there exists a finite nilpotent group X with Δ(G) ≅ Δ(X), then G is supersoluble.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

References

Ahmadi, H. and Taeri, B., A graph related to the join of subgroups of a finite group, Rend. Semin. Mat. Univ. Padova 131 (2014), 281292.CrossRefGoogle Scholar
Ballester-Bolinches, A. and Ezquerro, L. M., Classes of finite groups, in Mathematics and Its Applications, vol. 584 (Springer, Dordrecht, 2006).Google Scholar
Baer, R., The significance of the system of subgroups for the structure of the group, Amer. J. Math. 61(1) (1939), 144.CrossRefGoogle Scholar
Bray, J., Holt, D. and Roney-Dougal, C., The maximal subgroups of the low-dimensional finite classical groups. With a foreword by Martin Liebeck. London Mathematical Society Lecture Note Series, vol. 407 (Cambridge University Press, Cambridge, 2013).CrossRefGoogle Scholar
Burness, T., On base sizes for almost simple primitive groups, J. Algebra 516 (2018), 3874.CrossRefGoogle Scholar
Burness, T., Garonzi, M. and Lucchini, A., On the minimal dimension of a finite simple group. With an appendex by Burnes, T. C. and Guralnick, R. M., J. Combin. Theory Ser. A 171 (2020), 105175.CrossRefGoogle Scholar
Burness, T., Guralnick, R. and Saxl, J., On base sizes for symmetric groups, Bull. Lond. Math. Soc. 43(2) (2011), 386391.CrossRefGoogle Scholar
Burness, T., Liebeck, M. and Shalev, A., Base sizes for simple groups and a conjecture of Cameron, Proc. Lond. Math. Soc. (3) 98(1) (2009), 116162.CrossRefGoogle Scholar
Garonzi, M. and Lucchini, A., Maximal irredundant families of minimal size in the alternating group, Arch. Math. (Basel) 113(2) (2019), 119126.CrossRefGoogle Scholar
Gaschütz, W., Die Eulersche Funktion endlicher auflösbarer Gruppen, Illinois J. Math. 3 (1959), 469476.CrossRefGoogle Scholar
Guest, S. and Spiga, P., Finite primitive groups and regular orbits of group elements, Trans. Amer. Math. Soc. 369(2) (2017), 9971024.CrossRefGoogle Scholar
Hall, P., The eulerian functions of a group, Quart. J. Math. 7 (1936), 134151.CrossRefGoogle Scholar
Hawkes, T., Isaacs, I. M. and Özaydin, M., On the Möbius function of a finite group, Rocky Mountain J. Math. 19(4) (1989), 10031034.CrossRefGoogle Scholar
Kleidman, P. and Liebeck, M., The subgroup structure of the finite classical groups. London Mathematical Society Lecture Note Series, 129. (Cambridge University Press, Cambridge, 1990).CrossRefGoogle Scholar
Kratzer, C. and Thvenaz, J., Fonction de Möbius d’un groupe fini et anneau de Burnside, Comment. Math. Helv. 59(3) (1984), 425438.CrossRefGoogle Scholar
Liebeck, M., Praeger, C. and Saxl, J., On the O’Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. Ser. A 44(3) (1988), 389396.CrossRefGoogle Scholar
Schmidt, R., Subgroup lattices of groups, De Gruyter Expositions in Mathematics, vol. 14 (Walter de Gruyter, Berlin, 1994).CrossRefGoogle Scholar
Suzuki, M., Group theory I, Grundlehren der Mathematischen Wissenschaften vol. 247 (Springer-Verlag, Berlin, 1982).CrossRefGoogle Scholar
Wolf, T. R., Large orbits of supersolvable linear groups, J. Algebra 215(1) (1999), 235247.CrossRefGoogle Scholar