No CrossRef data available.
Published online by Cambridge University Press: 12 September 2018
In this paper, we will consider derived equivalences for differential graded endomorphism algebras by Keller's approaches. First, we construct derived equivalences of differential graded algebras which are endomorphism algebras of the objects from a triangle in the homotopy category of differential graded algebras. We also obtain derived equivalences of differential graded endomorphism algebras from a standard derived equivalence of finite dimensional algebras. Moreover, under some conditions, the cohomology rings of these differential graded endomorphism algebras are also derived equivalent. Then we give an affirmative answer to a problem of Dugas (A construction of derived equivalent pairs of symmetric algebras, Proc. Amer. Math. Soc. 143 (2015), 2281–2300) in some special case.