Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-16T14:59:38.329Z Has data issue: false hasContentIssue false

DECOMPOSITIONS OF COUNTABLE LINEAR TRANSFORMATIONS

Published online by Cambridge University Press:  22 March 2010

HUANYIN CHEN*
Affiliation:
Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China e-mail: [email protected], http://huanyinchens.blogbus.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let V be a countably generated right vector space over a division ring D. If D ≇ ℤ/2ℤ, ℤ/3ℤ, then for any γ ∈ EndD(V), there exists α ∈ AutD(V) such that γ+α, γ−α−1AutD(V). This gives a generalization of [D. Zelinsky, Proc. Amer. Math. Soc. 5 (1954), 627–630, Theorem].

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

REFERENCES

1.Chen, H., On exchange rings with all idempotents central, Algebra Colloq. 6 (1999), 4550.Google Scholar
2.Chen, H., Units, idempotents, and stable range condition, Comm. Algebra 29 (2001), 703717.Google Scholar
3.Goodearl, K. R., Von Neumann Regular Rings, Pitman, London–San Francisco–Melbourne, 1979; 2nd ed., Krieger, Malabar, FL, 1991.Google Scholar
4.Han, J. and Nicholson, W. K., Extensions of clean rings, Comm. Algebra 29 (2001), 25892595.CrossRefGoogle Scholar
5.Nicholson, W. K. and Varadarjan, K., Countable linear transformations are clean, Proc. Amer. Math. Soc. 126 (1998), 6164.CrossRefGoogle Scholar
6.Zelinsky, D., Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc. 5 (1954), 627630.CrossRefGoogle Scholar