Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T20:17:36.947Z Has data issue: false hasContentIssue false

CONFIGURATION CATEGORIES AND HOMOTOPY AUTOMORPHISMS

Published online by Cambridge University Press:  19 November 2018

MICHAEL S. WEISS*
Affiliation:
Math. Institut, Universität Münster, 48149 Münster, Einsteinstrasse 62, Germany E-mail: [email protected]

Abstract

Let M be a smooth compact manifold with boundary. Under some geometric conditions on M, a homotopical model for the pair (M, ∂M) can be recovered from the configuration category of M \ ∂M. The grouplike monoid of derived homotopy automorphisms of the configuration category of M \ ∂M then acts on the homotopical model of (M, ∂M). That action is compatible with a better known homotopical action of the homeomorphism group of M \ ∂M on (M, ∂M).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrade, R., From manifolds to invariants of En-algebras, PhD Thesis (MIT, 2010).Google Scholar
Adams, J. F., Infinite loop spaces, Annals of Mathematics Studies, vol. 90 (Princeton University Press, Princeton, NJ, 1978).CrossRefGoogle Scholar
Boavida de Brito, P., Segal objects and the Grothendieck construction, in An Alpine bouquet of algebraic topology (Ausoni, C., Hess, K., Johnson, B., Moerdijk, I. and Scherer, J., Editors), Contemporary Mathematics, vol. 708 (American Mathematical Society, Providence, RI, 2018), 1944.CrossRefGoogle Scholar
Boavida de Brito, P. and Weiss, M. S., Spaces of smooth embeddings and configuration categories, J. Topol. 11 (2018), 65143.CrossRefGoogle Scholar
Dwyer, W. G. and Kan, D., Function complexes in homotopical algebra, Topology 19 (1980), 427440.CrossRefGoogle Scholar
Hirschhorn, P. S., Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99 (American Mathematical Society, Providence, RI, 2002).Google Scholar
Hovey, M., Model categories, Mathematical Surveys and Monographs, vol. 63 (American Mathematical Society, Providence, RI, 1999), xii+209.Google Scholar
Rezk, C., A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001), 9731007.CrossRefGoogle Scholar
Segal, G., Categories and cohomology theories, Topology 13 (1974), 293312.CrossRefGoogle Scholar
Thomason, R. W., Homotopy colimits in the category of small categories, Math. Proc. Cambridge Philos. Soc. 85 (1979), 91109.CrossRefGoogle Scholar
Tillmann, S., Occupants in simplicial complexes, to appear in Alg. Geom. Topology.Google Scholar
Tillmann, S. and Weiss, M. S., Occupants in manifolds, in Manifolds and K-theory (Arone, G., Johnson, B., Lambrechts, P., Munson, B. A. and Volić, I., Editors), Contemporary Mathematics, vol. 682 (American Mathematical Society, Providence, RI, 2017).CrossRefGoogle Scholar
Weiss, M., Dalian notes on Pontryagin classes, arXiv:1507.00153.Google Scholar