Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T23:42:43.306Z Has data issue: false hasContentIssue false

COMPUTATION OF THE GROTHENDIECK AND PICARD GROUPS OF A TORIC DM STACK BY USING A HOMOGENEOUS COORDINATE RING FOR

Published online by Cambridge University Press:  01 September 2010

S. PAUL SMITH*
Affiliation:
Department of Mathematics, Box 354350, University of Washington, Seattle, WA 98195, USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We compute the Grothendieck and Picard groups of a smooth toric DM stack by using a suitable category of graded modules over a polynomial ring. The polynomial ring with a suitable grading and suitable irrelevant ideal functions is a homogeneous coordinate ring for the stack.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

REFERENCES

1.Artin, M. and Zhang, J. J., Noncommutative projective schemes, Adv. Math. 109 (1994) 228287.CrossRefGoogle Scholar
2.Borisov, L. A., Chen, L. and Smith, G. G., The orbifold Chow ring of toric Deligne–Mumford Stacks, J. Amer. Math. Soc. 18 (2005), 193215.CrossRefGoogle Scholar
3.Borisov, L. A. and Horja, R. P., On the K-theory of smooth toric DM Stacks, in Contemporary mathematics, vol. 401 (Becker, K., Becker, M., Bertram, A., Green, P. S. and McKay, B., Editors) (American Mathematical Society, Providence RI, 2006) pp. 2142.Google Scholar
4.Cox, D. A., The homogeneous coordinate ring of a toric variety, J. Algebra Geom. 4 (1995) 1750.Google Scholar
5.Fantechi, B., Mann, E. and Nironi, F., Smooth toric DM stacks, Journal für die reine unde angewandte Mathematik (Crelle's Journal) 0708.1254v1.Google Scholar
6.Gabriel, P., Des catégories abéliennes, Bull. Soc. Math. Fr. 90 (1962) 323448.CrossRefGoogle Scholar
7.Smith, S. P. and Zhang, J. J., Homogeneous coordinate rings in noncommutative algebraic geometry (in preparation).Google Scholar
8.Vistoli, A., Intersection theory on algebraic stacks and their moduli spaces, Invent. Math. 97 (1987) 613670.CrossRefGoogle Scholar