Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T04:34:19.976Z Has data issue: false hasContentIssue false

COMPLEX OF RELATIVELY HYPERBOLIC GROUPS

Published online by Cambridge University Press:  09 October 2018

ABHIJIT PAL*
Affiliation:
Department of Mathematics and Statistics, India Institute of Technology Kanpur, Kanpur-208016, India e-mail: [email protected], [email protected]
SUMAN PAUL*
Affiliation:
Department of Mathematics and Statistics, India Institute of Technology Kanpur, Kanpur-208016, India e-mail: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we prove a combination theorem for a complex of relatively hyperbolic groups. It is a generalization of Martin’s (Geom. Topology18 (2014), 31–102) work for combination of hyperbolic groups over a finite MK-simplicial complex, where k ≤ 0.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2018 

References

REFERENCES

Bestvina, M. and Feighn, M., A combination theorem for negatively curved groups, J. Differ. Geom. 35 (1992), 85101.CrossRefGoogle Scholar
Bowditch, B. H., A topological characterization of hyperbolic groups, J. Amer. Math. Soc. 11 (1998), 643667.CrossRefGoogle Scholar
Bowditch, B. H., Relatively hyperbolic groups, Int. J. Algebra Comput. 22 (2012), 1250016, 66pp.CrossRefGoogle Scholar
Bridson, M. R. and Haefliger, A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol 319 (Springer-Verlag, Berlin, 1999).CrossRefGoogle Scholar
Dahmani, F., Combination of convergence groups, Geom. Topol. (2003), 933–963.CrossRefGoogle Scholar
Farb, B., Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), 810840.CrossRefGoogle Scholar
Martin, A., Non-positively curved complexes of groups and boundaries, Geom. Topol. 18 (2014), 31102.CrossRefGoogle Scholar
Gitik, R., Mitra, M., E. Rips and M. Sageev, Width of subgroups, Trans. AMS 350 (1) (1998), 321329.CrossRefGoogle Scholar
Gromov, M., Essays in group theory, (ed Gersten) MSRI Publ., vol. 8 (Springer Verlag, 1985), 75263.Google Scholar
Groves, D. and Manning, J. F., Dehn filling in relatively hyperbolic groups, Isr. J. Math. 168 (2008), 317429.CrossRefGoogle Scholar
Hruska, G. Christopher and Wise, D. T., Packing subgroups in relatively hyperbolic groups, Geom. Topol. 13 (2009), 19451988.CrossRefGoogle Scholar
Haefliger, A., Complexes of groups and orbihedra, in Proceedings of the Group Theory from a Geometrical Viewpoint ICTP, Trieste, Italy, 26 March–6 April 1990.Google Scholar
Christopher, G. Hruska, Relative hyperbolicity and relative quasiconvexity for countable groups, Algebr. Geom. Topol. 10 (2010), 18071856.Google Scholar
Kapovich, I., The combination theorem and quasiconvexity, Int. J. Algebra Comput. 11 (2001), 185.CrossRefGoogle Scholar
Minasyan, A. and Osin, D., Acylindrical hyperbolicity of group acting on trees, Math. Ann. 362 (2015), 10551105.CrossRefGoogle Scholar
Mitra, M., Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differ. Geom. 48 (1) (1998), 135164.CrossRefGoogle Scholar
Mitra, M., Height in splitting of hyperbolic groups, Proc. Indian Acad. Sci. (Math. Sci.) 114 (1) (2004), 3954.CrossRefGoogle Scholar
Mj, M. and Reeves, L., A combination theorem for strong relative hyperbolicity, Geom. Topol. 12 (2008), 17771798.CrossRefGoogle Scholar
Mj, M. and Pal, A., Relative hyperbolicity, trees of spaces and Cannon-Thurston maps, Geom. Dedicata 151 (1) (2011), 5975.CrossRefGoogle Scholar
Mj, M. and Sardar, P., Combination theorem for metric bundles, Geom. Funct. Anal. 22 (6) (2012), 16361707.CrossRefGoogle Scholar
Serre, J.-P., Arbres, amalgames, SL2. RŤÒdigŤÒ avec la collaboration de Hyman Bass Asterisque, No. 46 (Societe Mathematique de France, Paris, 1977).Google Scholar
Serre, J.-P., Trees (Translated from the French by John Stillwell) (Springer-Verlag, Berlin Heidelberg, 1980). ISBN 3-540-10103-9.Google Scholar
Szczepanski, A., Relatively hyperbolic groups, Michigan Math. J. 45 (3) (1998), 611618.Google Scholar
Tukia, P., Generalizations of Fuchsian and Kleinian groups, First European Congress of Mathematics, Vol. II (Paris, 1992) 447461.Google Scholar
Yang, W.-Y., Limit sets of relatively hyperbolic groups, Geometriae Dedicata 156 (1) (2012), 112.CrossRefGoogle Scholar
Yaman, A., A topological characterisation of relatively hyperbolic groups, 2004(566) (2004), 41–89.CrossRefGoogle Scholar