Article contents
The compact range property and C0
Published online by Cambridge University Press: 18 May 2009
Extract
The purpose of this short note is to make an observation about Dunford–Pettis operators from L1[0, 1] to C0. Recall that an operator T:E→F (where E and F are Banach spaces) is called Dunford–Pettis if T takes weakly convergent sequences of E into norm convergent sequences of F. A Banach space F has the Compact Range Property (CRP) if every operator T:L1]0, 1]→F is Dunford–Pettis. Talagrand shows in his book [2] that C0 does not have the CRP. It is of interest (especially in mathematical economics [3]) to note that every positive operator from L1[0, 1] to C0 is Dunford–Pettis.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1986
References
REFERENCES
- 7
- Cited by