Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T20:54:59.472Z Has data issue: false hasContentIssue false

Compact Hankel operators on weighted harmonic Bergman spaces

Published online by Cambridge University Press:  18 May 2009

Karel Stroethoff
Affiliation:
Department of Mathematical Sciences, University of MontanaMissoula, MT 59812-1032, USA e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove the compactness of certain Hankel operators on weighted Bergman spaces of harmonic functions on the unit ball in Rn.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1997

References

REFERENCES

1.Axler, S., Bourdon, P., and Ramey, W., Harmonic function theory, Graduate Texts in Mathematics (Springer-Verlag, 1992).CrossRefGoogle Scholar
2.Axler, S., Conway, J. B., and McDonald, G., Toeplitz operators on Bergman spaces, Canad. J. Math. 34 (1982), 466483.CrossRefGoogle Scholar
3.Axler, S. and Ramey, W., Harmonic polynomials and Dirichlet-type problems, Proc. Amer. Math. Soc. 123 (1995), 37653773.CrossRefGoogle Scholar
4.Jovović, M., Compact Hankel operators on the harmonic Bergman space Integral Equations Operator Theory 22 (1995), 295304.CrossRefGoogle Scholar
5.Rudin, W., Real and complex analysis (McGraw-Hill, 1970).Google Scholar
6.Zhu, K., Schatten class Hankel operators on the Bergman space of the unit ball, Amer. J. Math. 113 (1991), 147167.CrossRefGoogle Scholar
7.Zhu, K., Operator theory in function spaces (Marcel Dekker, 1990).Google Scholar