Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T19:57:19.820Z Has data issue: false hasContentIssue false

CODES, S-STRUCTURES, AND EXCEPTIONAL LIE ALGEBRAS

Published online by Cambridge University Press:  07 May 2019

ISABEL CUNHA
Affiliation:
Departamento de Matemática e Centro de Matemática e Aplicações da Universidade da Beira Interior, Universidade da Beira Interior, 6201-001 Covilhã, Portugale-mail:[email protected]
ALBERTO ELDUQUE
Affiliation:
Departamento de Matemáticas e Instituto Universitario de Matemáticas y Aplicaciones, Universidad de Zaragoza, 50009 Zaragoza, Spaine-mail:[email protected]

Abstract

The exceptional simple Lie algebras of types E7 and E8 are endowed with optimal $\mathsf{SL}_2^n$ -structures, and are thus described in terms of the corresponding coordinate algebras. These are nonassociative algebras which much resemble the so-called code algebras.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, B., Benkart, G. and Gao, Y., Lie algebras graded by the root systems BC r, r ≥ 2, Memoirs of the American Mathematical Society, vol. 751 (American Mathematical Society, 2002).Google Scholar
Benkart, G. and Elduque, A., Lie algebras with prescribed $\mathfrak{sl}_3$ decomposition, Proc. Am. Math. Soc. 140(8) (2012), 26272638.CrossRefGoogle Scholar
Bermann, S. and Moody, R. V., Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy, Invent. Math. 108(2) (1992), 323347.CrossRefGoogle Scholar
Bourbaki, N., Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Springer-Verlag, Berlin, 2002).CrossRefGoogle Scholar
Bourbaki, N., Lie groups and Lie algebras. Chapters 7–9, Elements of Mathematics (Springer-Verlag, Berlin, 2005).Google Scholar
Castillo-Ramrez, A., McInroy, J. and Rehren, F., Code algebras, axial algebras and VOAs, J. Algebra 518 (2019), 146176.CrossRefGoogle Scholar
Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, vol. 290, 3rd edition, (Springer-Verlag, New York, 1999).CrossRefGoogle Scholar
Ebeling, W., Lattices and codes, in A course partially based on lectures (Hirzebruch, F., Editor), Advanced Lectures in Mathematics (Friedr. Vieweg & Sohn, Braunschweig, 1994).Google Scholar
Elduque, A., The magic square and symmetric compositions. II, Rev. Mat. Iberoam. 23(1) (2007), 5784.CrossRefGoogle Scholar
Elduque, A. and Kochetov, M., Gradings on simple Lie algebras, Mathematical Surveys and Monographs, vol. 189 (American Mathematical Society, Providence, RI, 2013).Google Scholar
Vinberg, E. B., Non-abelian gradings of Lie algebras, in 50th Seminar “Sophus Lie”, vol. 113 (Banach Center Publ., Polish Acad. Sci. Inst. Math., Warsaw, 2017), 1938.Google Scholar