Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T13:41:40.206Z Has data issue: false hasContentIssue false

THE CESÀRO OPERATOR IN THE FRÉCHET SPACES ℓp+ AND Lp

Published online by Cambridge University Press:  13 June 2016

ANGELA A. ALBANESE
Affiliation:
Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento- C.P.193, I-73100 Lecce, Italy, e-mail: [email protected]
JOSÉ BONET
Affiliation:
Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, E-46071 València, Spain, e-mail: [email protected]
WERNER J. RICKER
Affiliation:
Math.-Geogr. Fakultät, Katholische Universität Eichstätt-Ingolstadt, D-85072 Eichstätt, Germany e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The classical spaces ℓp+, 1 ≤ p < ∞, and Lp, 1<p ≤ ∞, are countably normed, reflexive Fréchet spaces in which the Cesàro operator C acts continuously. A detailed investigation is made of various operator theoretic properties of C (e.g., spectrum, point spectrum, mean ergodicity) as well as certain aspects concerning the dynamics of C (e.g., hypercyclic, supercyclic, chaos). This complements the results of [3, 4], where C was studied in the spaces ℂ, Lploc(ℝ+) for 1 < p < ∞ and C(ℝ+), which belong to a very different collection of Fréchet spaces, called quojections; these are automatically Banach spaces whenever they admit a continuous norm.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2016 

References

REFERENCES

1. Albanese, A. A., Bonet, J. and Ricker, W. J., Mean ergodic operators in Fréchet spaces, Ann. Acad. Sci. Fenn. Math. 34 (2009), 401436.Google Scholar
2. Albanese, A. A., Bonet, J. and Ricker, W. J., Montel resolvents and uniformly mean ergodic semigroups of linear operators, Quaest. Math. 36 (2013), 253290.Google Scholar
3. Albanese, A. A., Bonet, J. and Ricker, W. J., Convergence of arithmetic means of operators in Fréchet spaces, J. Math. Anal. Appl. 401 (2013), 160173.Google Scholar
4. Albanese, A. A., Bonet, J. and Ricker, W. J., On the continuous Cesàro operator in certain function spaces, Positivity. 19 (2015), 659679.Google Scholar
5. Bayart, F. and Matheron, E., Dynamics of linear operators. Cambridge Tracts in Mathematics, vol. 179 (Cambridge University Press, Cambridge, 2009).Google Scholar
6. Bellenot, S. F. and Dubinsky, E., Fréchet spaces with nuclear Köthe quotients, Trans. Amer. Math. Soc. 273 (1982), 579594.Google Scholar
7. Boyd, D. W., The spectrum of the Cesàro operator, Acta Sci. Math. (Szeged) 29 (1968), 3134.Google Scholar
8. Castillo, J. M. F., Díaz, J. C. and Motos, J., On the Fréchet space L p- , Manuscr. Math. 96 (1998), 210230.Google Scholar
9. Galaz Fontes, F. and Ruiz-Aguilar, R. W., Grados de ciclicidad de los operadores de Cesàro-Hardy, Misc. Mat. 57 (2013), 103117.Google Scholar
10. González, M., The fine spectrum of the Cesàro operator in ℓ p (1 < p < ∞), Arch. Math. 44 (1985), 355358.Google Scholar
11. Grosse-Erdmann, K.-G. and Manguillot, A. Peris, Linear chaos Universitext (Springer Verlag, London, 2011).Google Scholar
12. Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, Reprint of the 1952 edition. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1988).Google Scholar
13. Krengel, U., Ergodic theorems, de Gruyter Studies in Mathematics, vol. 6 (Walter de Gruyter Co., Berlin, 1985).Google Scholar
14. Leibowitz, G. M., Spectra of discrete Cesàro operators, Tamkang J. Math. 3 (1972), 123132.Google Scholar
15. Leibowitz, G. M., Spectra of finite range Cesàro operators, Acta Sci. Math. (Szeged) 35 (1973), 2728.Google Scholar
16. Leibowitz, G.M., The Cesàro operators and their generalizations: Examples in infinite-dimensional linear analysis, Amer. Math. Mon. 80 (1973), 654661.Google Scholar
17. León–Saavedra, F., Piqueras–Lerena, A. and Seoane–Sepúlveda, J. B., Orbits of Cesàro type operators, Math. Nachr. 282 (2009), 764773.Google Scholar
18. Meise, R. and Vogt, D., Introduction to functional analysis, Oxford Graduate Texts in Mathematics, vol. 2 (The Clarendon Press, Oxford University Press, New York, 1997).Google Scholar
19. Metafune, G. and Moscatelli, V. B., On the space $\ell^{p^+}=\cap_{q>p}\ell^q$ , Math. Nachr. 147 (1990), 712.Google Scholar
20. Metafune, G. and Moscatelli, V. B., Quojections and prequojections, in Advances in the theory of Fréchet spaces (Terzioglu, T., Editor), NATO ASI Series, vol. 287 (Kluwer Academic Publishers, Dordrecht, 1989), 235254.Google Scholar
21. Reade, J. B., On the spectrum of the Cesàro operator, Bull. London Math. Soc. 17 (1985), 263267.Google Scholar