Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T02:39:59.907Z Has data issue: false hasContentIssue false

THE CENTER OF SL2 TILTING MODULES

Published online by Cambridge University Press:  05 March 2021

DANIEL TUBBENHAUER
Affiliation:
Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, Campus Irchel, Office Y27J32, CH-8057Zürich, Switzerland, e-mail: [email protected]
PAUL WEDRICH
Affiliation:
Mathematical Sciences Research Institute, 17 Gauss Way, Berkeley, CA94720, USA, e-mail: [email protected]

Abstract

In this note, we compute the centers of the categories of tilting modules for G = SL2 in prime characteristic, of tilting modules for the corresponding quantum group at a complex root of unity, and of projective GgT-modules when g = 1, 2.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, H. H., Tilting modules and cellular categories, J. Pure Appl. Algebra 224(9) (2020), 106366. Available at doi: 10.1016/j.jpaa.2020.106366.CrossRefGoogle Scholar
Andersen, H. H., Stroppel, C. and Tubbenhauer, D., Cellular structures using U q -tilting modules, Pacific J. Math. 292(1) (2018), 2159. Available at https://arxiv.org/abs/1503.00224, doi: 10.2140/pjm.2018.292.21.CrossRefGoogle Scholar
Andersen, H. H. and Tubbenhauer, D., Diagram categories for U q -tilting modules at roots of unity, Transform. Groups 22(1) (2017), 2989. Available at https://arxiv.org/abs/1808.08022, doi: 10.1007/s00031-016-9363-z.CrossRefGoogle Scholar
Donkin, S., On tilting modules for algebraic groups, Math. Z. 212(1) (1993), 3960. doi: 10.1007/BF02571640.CrossRefGoogle Scholar
Tubbenhauer, D. and Wedrich, P., Quivers for SL(2) tilting modules. Preprint. Available at https://arxiv.org/abs/1907.11560.Google Scholar
Williamson, G., Algebraic representations and constructible sheaves, Jpn. J. Math. 12(2) (2017), 211259. Available at https://arxiv.org/abs/1610.06261, doi: 10.1007/s11537-017-1646-1.CrossRefGoogle Scholar