Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T17:24:12.452Z Has data issue: false hasContentIssue false

Category of sequences of zeros and ones in some FK spaces

Published online by Cambridge University Press:  18 May 2009

Robert Devos
Affiliation:
Villanova University, Villanova, Pennsylvania 19085, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let s denote the space of all complex valued sequences and let E be all eventually zero sequences. An FK space is a locally convex vector subspace of s which is also a Fréchet space (complete linear metric) with continuous coordinates. A BK space is a normed FK space. Some discussion of FK spaces is given in [11]. Well-known examples of BK spaces are the spaces m, c, c0 of bounded, convergent, null sequences respectively, all with and

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1978

References

REFERENCES

1.Bennett, G. and Kalton, N. J., FK-spaces containing c0, Duke Math. J. 39 (1972), 561582.Google Scholar
2.Bennett, G. and Kalton, N. J., Inclusion theorems for K-Spaces, Canad. J. Math. 25 (1973), 511524.CrossRefGoogle Scholar
3.DeVos, R., Subsequences and rearrangements of sequences in FK spaces, Pacific J. Math. 64 (1976), 129135.Google Scholar
4.Fridy, J. A., Summability of rearrangements of sequences, Math. Z. 143 (1975), 187192.CrossRefGoogle Scholar
5.Hill, J. D., Summability of sequences of O's and l's, Ann. of Math. 64 (1945), 556562.CrossRefGoogle Scholar
6.Keagy, T. A., Summability of certain category two classes, to appear.Google Scholar
7.Keogh, F. R. and Petersen, G. M., A universal Tauberian theorem, J. London Math. Soc. 33 (1958), 121123.Google Scholar
8.Lorentz, G. G., Direct theorems on methods of summability II, Canad. J. Math. 3 (1951), 236256.Google Scholar
9.Peyeremhoff, A., Über ein Lemma von Herrn H. C. Chow, J. London Math. Soc. 32 (1957), 3336.Google Scholar
10.Sargent, W. L. C., Some sequence spaces related to the l p spaces, J. London Math. Soc. 35 (1960), 161171.CrossRefGoogle Scholar
11.Wilansky, A., Functional analysis (Blaisdell, 1964).Google Scholar
12.Zeller, K., Matrixtransformationen von Folgenraumen, Univ. Roma. 1st Naz. Alta. Mat. Rend. Mat. e Appl. (5) 12 (1954), 340346.Google Scholar