Article contents
Capitulation in unramified quadratic extensions of real quadratic number fields
Published online by Cambridge University Press: 18 May 2009
Extract
Let k be an algebraic number field and Ck its ideal class group (in the wider sense). Suppose K is a finite extension of k. Then we say that an ideal class of k capitulates in K if this class is in the kernel of the homomorphism
induced by extension of ideals from k to K (See Section 2 below). In [4], Iwasawa gives examples of real quadratic number fields, with distinct primes Pi ≡ 1 (mod 4), for which all the ideal classes of the 2-class group, Ck,2 (the 2-Sylow subgroup of Ck), capitulate in an unramified quadratic extension of k. In these examples, Ck,2 is abelian of type (2,2), i.e. isomorphic to ℤ/2ℤ×ℤ/2ℤ and so all four ideal classes capitulate.
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 1994
References
REFERENCES
- 9
- Cited by