Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-08T04:26:12.507Z Has data issue: false hasContentIssue false

Bounded mean curvature isometric immersions of a compact Riemannian manifold with images contained in a tube

Published online by Cambridge University Press:  18 May 2009

Francisco J. Carreras
Affiliation:
Departamento de Geometria y TopologiáUniversidad de Valencia Burjasot, ValenciaSpaine-mail: [email protected]
Fernando Giménez
Affiliation:
Departamento de Matemática AplicadaE.T.S.I. IndustrialesUniversidad Politécnica de ValenciaSpain e-mail: [email protected].
Vicente Miquel
Affiliation:
Departamento de Geometría y TopologíUniversidad de Valencia Burjasot, ValenciaSpain e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We characterize some isometric immersions of a compact Riemannian manifold into a tube of Sn(λ) or CPn(λ) (in fact, in some more general spaces in the real case) around a totally geodesic Sq(λ) or CPq(λ) respectively, with the norm of the mean curvature of the immersion bounded from above. This bound depends on the radius of the tube, and is related with the mean curvature of its boundary.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1998

References

REFERENCES

1.Blumenthal, R. A. and Hebda, J. J., De Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier, Grenoble 33 (1983), 183198.CrossRefGoogle Scholar
2.Carreras, F. J., Giménez, F. and Miquel, V., Immersions of compact Riemannian manifolds into a ball of a complex space form, Math. Z. 225 (1997), 103113.CrossRefGoogle Scholar
3.Eschenburg, J.-H., Comparison Theorems and Hypersurfaces, Manuscripta Math. 59 (1987), 295323.Google Scholar
4.Giménez, F., Comparison theorems for the volume of a compact submanifold of a Kähler manifold, Israel J. Math. 71 (1990), 239255.CrossRefGoogle Scholar
5.Greene, R. E. and Wu, H., Function Theory on Manifolds Which Possess a Pole, Vol. 699 (Springer-Verlag, 1979).Google Scholar
6.Hasanis, Th. and Koutroufiotis, D., Immersions of Riemannian manifolds into cylinders, Arch. Math. 40 (1983), 8285.CrossRefGoogle Scholar
7.Jorge, L. P. and Xavier, F. V., An inequality between the exterior diameter and the mean curvature of bounded immersions, Math. Z. 178 (1981), 7782.Google Scholar
8.Kitagawa, Y., An estimate for the mean curvature of complete submanifolds in a tube, Kodai Math. J. 7 (1984), 185191.CrossRefGoogle Scholar
9.Lawson, H. B. Jr, Rigidity Theorems in rank-1 symmetric spaces, J. Diff. Geom. 4 (1970), 349357.Google Scholar
10.Lluch, A. and Miquel, V., Bounds for the First Dirichlet Eigenvalue attained at an Infinite Family of Riemannian Manifolds, Geometriae Dedicata 61 (1996), 5169.CrossRefGoogle Scholar
11.Markvorsen, S., A Sufficient Condition for a Compact Immersion to be Spherical, Math. Z. 183 (1983), 407411.CrossRefGoogle Scholar
12.Otsuki, T., Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145173.Google Scholar