Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T09:20:43.113Z Has data issue: false hasContentIssue false

Automorphy factors for a Hilbert modular group

Published online by Cambridge University Press:  18 May 2009

Shigeaki Tsuyumine
Affiliation:
Sonderforschungsbereich 170, Mathematisches Institut, Bunsenstrabe 3-5, 3400 Göttingen, West Germany.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a totally real algebraic number field of degree n > 1, and let OK be the maximal order. We denote by гk, the Hilbert modular group SL2(OK) associated with K. On the extent of the weight of an automorphy factor for гK, some restrictions are imposed, not as in the elliptic modular case. Maass [5] showed that the weight is integral for K = ℚ(√5). It was shown by Christian [1] that for any Hilbert modular group it is a rational number with the bounded denominator depending on the group.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1988

References

1.Christian, U., Über Hilbert-Siegelsche Modulformen und Poincarésche Reihen, Math. Ann. 148 (1962), 257307.CrossRefGoogle Scholar
2.Freitag, E., Automorphy factors of Hilbert's modular group, In: Discrete subgroups of Lie groups and applications to moduli, (Tata Institute, 1975).Google Scholar
3.Gundlach, K.-B., Multiplier systems for Hilbert's and Siegel's modular groups, Glasgow Math. J. 17 (1985), 5780Google Scholar
4.Kirchheimer, F., Zur Bestimmung der linearen Charaktere symplektischer Hauptkongruen-zuntergruppen, Math. Z. 150 (1976), 135148.CrossRefGoogle Scholar
5.Maass, H., Modulformen und quadratische Formen über den quadratischen Zahlkörper R(√5), Math. Ann. 118 (1941), 6584.Google Scholar
6.Rankin, R. A., Modular forms and functions, (Cambridge University Press, 1977).CrossRefGoogle Scholar
7.Serre, J.-P., Le probleme des groupes de congruence pour SL2, Ann. Math. 92 (1970), 489527.Google Scholar
8.Tsuyumine, S., Multi-tensors of differential forms on the Hilbert modular variety and on its subvarieties, Math. Ann. 274 (1986), 659670.CrossRefGoogle Scholar
9.Tsuyumine, S., Multi-tensors of differential forms on the Hilbert modular variety and on its subvarieties, II. In preparation.Google Scholar