Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T07:12:32.544Z Has data issue: false hasContentIssue false

Annihilators and the CS-condition

Published online by Cambridge University Press:  18 May 2009

W. K. Nicholson
Affiliation:
Department of Mathematics, University of Calgary, Calgary, CanadaT2N 1N4
M. F. Yousif
Affiliation:
Department of Mathematics, Ohio State University, Lima, Ohio 45804, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is proved that if every cyclic right R-module is torsionless and R is a left CS-ring then R is semiperfect left continuous with soc(RR)essential in RR. As a consequence every right cogenerator, left CS-ring R is shown to be right pseudo-Frobenius and left continuous, and an example is given to show that R need not be left selfinjective. It is also proved that if R is a left CS-ring and every cyclic right R-module embeds in a free module, then R is quasi-Frobenius if and only if J(R)Z(RR).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1998

References

1.Anderson, F. W. and Fuller, K. R., Rings and categories of modules (Springer-Verlag, 1991).Google Scholar
2.Björk, J.-E., Rings satisfying certain chain conditions, J. Reine Angew. Math. 245 (1970), 6373.Google Scholar
3.Camillo, V., Commutative rings whose principal ideals are annihilators, Portugal. Math. 46 (1989), 3337.Google Scholar
4.Camillo, V. and Yousif, M. F., Continuous rings with ACC on annihilators, Canad. Math. Bull. 34 (1991), 462464.CrossRefGoogle Scholar
5.Dischinger, F. and Müller, W., Left PF is not right PF, Comm., Alg. 14 (1986), 12231227.CrossRefGoogle Scholar
6.Faith, C., Embedding modules in projectives. A report on a problem, Lecture Notes in Math. 951, 2140. (Springer-Verlag, 1982).Google Scholar
7.Faith, C., Algebra II, Ring theory (Springer-Verlag, 1976).CrossRefGoogle Scholar
8.Faith, C. and Menal, P., A counter-example to a conjecture of Johns, Proc. Amer. Math. Soc. 116 (1992), 2126.CrossRefGoogle Scholar
9.Faith, C. and Menal, P., The structure of Johns Rings, Proc. Amer. Math. Soc. 120 (1994), 10711081.CrossRefGoogle Scholar
10.Pardo, J. L. Gomez and Asensio, P. A. Guil, Essential embedding of cyclic modules in projectives, Trans. Amer. Math. Soc. 349 (1997), 43434353.CrossRefGoogle Scholar
11.Pardo, J. L. Gomez and Asensio, P. A. Guil, Rings with finite essential socle, Proc. Amer. Math. Soc. 125 (1997), 971977.CrossRefGoogle Scholar
12.Hajarnavis, C. R. and Norton, N. C., On dual rings and their modules, J. Algebra 93 (1985), 253266.CrossRefGoogle Scholar
13.Jain, S. K. and López-Permouth, S. R., Rings whose cyclics are essentially embeddable in projective modules, J. Algebra 128 (1990), 257269.CrossRefGoogle Scholar
14.Kasch, F., Modules and rings (London Math. Soc. Monographs Vol 17, Academic Press, New York, 1982).Google Scholar
15.Nicholson, W. K. and Yousif, M. F., Principally injective rings, J. Algebra 174 (1995), 7793.CrossRefGoogle Scholar
16.Nicholson, W. K. and Yousif, M. F., Mininjective rings, J. Algebra 187 (1997), 548578.CrossRefGoogle Scholar
17.Osofsky, B. L., A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373387.CrossRefGoogle Scholar
18.Rada, J. and Saorin, M., On semiregular rings whose finitely generated modules embed in free, Canad. Math Bull. 40 (1997), 221230.CrossRefGoogle Scholar
19.Rutter, E. A., Two characterizations of quasi-Frobenius rings, Pacific J. Math. 30 (1969), 777784.CrossRefGoogle Scholar
20.Utumi, Y., On continuous and self-injective rings, Trans. Amer. Math. Soc. 118 (1965), 158173.CrossRefGoogle Scholar
21.Yousif, M. F., On continuous rings, J. Algebra 191 (1997), 495509.CrossRefGoogle Scholar