Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T20:56:10.689Z Has data issue: false hasContentIssue false

An extension of a theorem on the equivalence between absolute Rieszian and absolute Cesàro summability

Published online by Cambridge University Press:  18 May 2009

D. Borwein
Affiliation:
St. Salvator's College, University of St. Andrews
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

be a given series and let

With Flett [4], we say that the series is summable , q real, if

where Summability |C, k, 0|1 is identical with absolute Cesàro summability (C, k), or summability |C, k|, as defined by Fekete [3].

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1959

References

1.Boyd, A. V. and Hyslop, J. M., A definition for strong Rieszian summability and its relationship to strong Cesàro summability, Proc. Glasgow Math. Assoc., 1 (19521953), 9499.Google Scholar
2.Hyslop, J. M., On tho absolute summability of series by Rieszian means, Proc. Edinburgh Math. Soc., 5 (19371938), 4654.Google Scholar
3.Fekete, M., Vizsgálatok az absolut summabilis sorokrol, alkalmazással a Direchlet-és Fourier- sorokra, Math, és Termész. Ért., 32 (1914), 389425.Google Scholar
4.Flett, T. M., Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc., (3), 8 (1958), 357387.Google Scholar
5.Obreschkoff, N., Sur la sommation absolue des séries de Dirichlet, Comptes Rendus, 186 (1928), 215.Google Scholar
6.Obreschkoff, N., Über die absolute Summierung der Dirichletschen Reihen, Math. Z. 30 (1929), 375386.CrossRefGoogle Scholar