No CrossRef data available.
Article contents
AN ALGEBRAIC-METRIC EQUIVALENCE RELATION OVER p-ADIC FIELDS
Published online by Cambridge University Press: 31 July 2012
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let p be a prime number, Qp the field of p-adic numbers, K a finite field extension of Qp, K a fixed algebraic closure of K and Cp the completion of K with respect to the p-adic valuation. We introduce and investigate an equivalence relation on Cp, defined in terms of field extensions and metric properties of Galois orbits over K.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2012
References
REFERENCES
1.Alexandru, V., Popescu, N. and Zaharescu, A., On the closed subfields of Cp, J. Number Theory 68 (2)(1998), 131–150.CrossRefGoogle Scholar
2.Alexandru, V., Popescu, N. and Zaharescu, A., The generating degree of Cp, Canad. Math. Bull. 44 (1) (2001), 3–11.Google Scholar
3.Alexandru, V., Popescu, N. and Zaharescu, A., Trace on Cp, J. Number Theory 88 (1) (2001), 13–48.CrossRefGoogle Scholar
4.Ax, J., Zeros of polynomials over local fields – The Galois action, J. Algebra 15 (1970), 417–428.CrossRefGoogle Scholar
5.Barsky, D., Transformation de Cauchy p-adique et algèbre d'Iwasawa, Math. Ann. 232 (3) (1978), 255–266.CrossRefGoogle Scholar
6.Ioviţă, A. and Zaharescu, A., Completions of r.a.t.-valued fields of rational functions, J. Number Theory 50 (2) (1995), 202–205.CrossRefGoogle Scholar
7.Mazur, B. and Swinnerton-Dyer, P., Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.Google Scholar
9.Tate, J. T., p-divisible groups, in Proc. Conf. Local Fields, Driebergen, 1966 (Springer, Berlin, Germany, 1967) 158–183.CrossRefGoogle Scholar
10.Zaharescu, A., A metric symbol for pairs of polynomials over local fields, C.R. Math. Acad. Sci. Soc. R. Can. 22 (4) (2000), 147–150.Google Scholar
11.Zaharescu, A., Lipschitzian elements over p-adic fields, Glasgow Math. J. 47 (2005), 363–372.Google Scholar
You have
Access