Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T07:18:36.184Z Has data issue: false hasContentIssue false

Almost continuity implies closure continuity

Published online by Cambridge University Press:  18 May 2009

Mohammad Saleh
Affiliation:
Mathematics Department, Birzeit University, PO Box 14, Birzeit, West Bank, Palestine
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this note is to answer in the affirmative a long standing open question raised by Singal and Singal — whether every almost continuous function is closure continuous (θ-continuous).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1998

References

1.Alexandroff, P. and Urysohn, P., Mèmoire sur les espaces topologiques compacts, Verh. Nederl. Akad. Wetensch. Afd. Natuurk. Sect. l 14 (1929), 196.Google Scholar
2.Andrew, D. R. and Whittlesy, E. K., Closure continuity, Amer. Math. Monthly 73 (1966), 758759.CrossRefGoogle Scholar
3.Fomin, S. V., Extensions of topological spaces, C. R. Dokl. Akad. Sci. URSS (M. S.) 32 (1941), 114116.Google Scholar
4.Herrington, L., Properties of nearly-compact spaces, Proc. Amer. Math. Soc. 45 (1974), 431436.CrossRefGoogle Scholar
5.Long, P. E. and McGehee, E. E., Properties of almost continuous functions, Proc. Amer. Math. Soc. 24 (1970), 175180.CrossRefGoogle Scholar
6.Long, P. E. and Carnahan, D. A., Comparing almost continuous functions, Proc. Amer. Math. Soc. 38 (1973), 413418.CrossRefGoogle Scholar
7.Noire, T., On weakly continuous mappings, Proc. Amer. Math. Soc. 46(1) (1974), 120124.CrossRefGoogle Scholar
8.Scarborough, C. T. and Stone, A. H., Products of nearly compact spaces, Trans. Amer. Math. Soc. 124 (1966), 131147.CrossRefGoogle Scholar
9.Singal, M. K. and Singal, A. R., Almost continuous mappings, Yokohama Math. J. 16 (1968), 6373.Google Scholar
10.Singal, M. K. and Mathur, A., On nearly compact spaces, Boll. Un. Mat. Ital. 4(2) (1969), 702710.Google Scholar