No CrossRef data available.
Article contents
Local delta invariants of weak del Pezzo surfaces with the anti-canonical degree
$\geq 5$
Published online by Cambridge University Press: 30 January 2025
Abstract
The delta invariant interprets the criterion for the K-(poly)stability of log terminal Fano varieties. In this paper, we determine local delta invariants for all weak del Pezzo surfaces with the anti-canonical degree $\geq 5$.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust
References
Abban, H. and Zhuang, Z., K-stability of Fano varieties via admissible flags, Forum Math Pi. 10, e15 (2022).CrossRefGoogle Scholar
Araujo, C., Castravet, A.-M., Cheltsov, I., et al., The Calabi problem for Fano threefolds, London Mathematical Society Lecture Note Series, vol. 485, (Cambridge University Press, Cambridge, 2021).Google Scholar
Blum, H. and Jonsson, M., Thresholds, valuations, and K-stability, Adv Math 365 (2020), 107062.CrossRefGoogle Scholar
Blum, H. and Xu, C., Uniqueness of K-polystable degenerations of Fano varieties, Ann Math. 190 (2019), 609–656.CrossRefGoogle Scholar
Cheltsov, I., Fujita, K., Kishimoto, T. and Okada, T., K-stable divisors in
$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$
of degree
$(1,1,2)$
, Nagoya Math. J. 251(2023), 686–714.CrossRefGoogle Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250129121715907-0169:S0017089524000260:S0017089524000260_inline3135.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250129121715907-0169:S0017089524000260:S0017089524000260_inline3136.png?pub-status=live)
Cheltsov, I. and Prokhorov, Y., Del Pezzo surfaces with infinite automorphism groups, Algebraic Geom. 8 (2021), 319–357.CrossRefGoogle Scholar
Coray, D. and Tsfasman, M., Arithmetic on Singular Del Pezzo Surfaces. Proceedings of the London Mathematical Society 57, (1988), 25–87.CrossRefGoogle Scholar
Denisova, E.,
$\delta$
-invariant of Du Val del Pezzo surfaces of degree
$\geq 4$
, arXiv:2304.11412v1[math.AG].Google Scholar
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250129121715907-0169:S0017089524000260:S0017089524000260_inline3137.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20250129121715907-0169:S0017089524000260:S0017089524000260_inline3138.png?pub-status=live)
Dolgachev, I., Classical algebraic geometry. A modern view (Cambridge University Press, 2012).CrossRefGoogle Scholar
Fujita, K. and Odaka, Y., On the K-stability of Fano varieties and anticanonical divisors, Tohoku Math J. 70(4) (2018), 511–521.CrossRefGoogle Scholar
Fujita, K., A valuative criterion for uniform K-stability of Q-Fano varieties, J Reine Angew Math 751 (2019), 309–338.CrossRefGoogle Scholar
Li, C., K-semistability is equivariant volume minimization, Duke Math J 166(16) (2017), 3147–3218.CrossRefGoogle Scholar
Liu, Y., Xu, C. and Zhuang, Z., Finite generation for valuations computing stability thresholds and applications to K-stability, Ann Math 196 (2022), 507–566.CrossRefGoogle Scholar