We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
Blanc, J. and Cantat, S., Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc.29(2) (2016), 415–471.CrossRefGoogle Scholar
[2]
Blanc, J. and Déserti, J., Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)14(2) (2015), 507–533.Google Scholar
[3]
Blanc, J. and Furter, J.-P., Topologies and structures of the Cremona groups, Ann. Math. (2)178(3) (2013), 1173–1198.CrossRefGoogle Scholar
[4]
Blanc, J. and Furter, J.-P., Length in the Cremona group, Ann. H. Lebesgue2 (2019), 187–257.CrossRefGoogle Scholar
[5]
Cantat, S., Dynamique des automorphismes des surfaces K3, Acta Math.187(1) (2001), 1–57.CrossRefGoogle Scholar
[6]
Cantat, S. and Cornulier, Y., Distortion in Cremona groups, Ann. Scuola Normale Sup. Pisa Cl. Sci.20(2) (2020), 827–858.Google Scholar
[7]
Déserti, J., Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer, Int. Math. Res. Not.27 (2006), Art. ID 71701.Google Scholar
[8]
Diller, J. and Favre, C., Dynamics of bimeromorphic maps of surfaces, Amer. J. Math.123(6) (2001), 1135–1169.CrossRefGoogle Scholar
[9]
Gizatullin, M. H., Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat.44(1) (1980), 110–144, 239.Google Scholar