Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-16T15:18:15.918Z Has data issue: false hasContentIssue false

An extension of the van Hemmen–Ando norm inequality

Published online by Cambridge University Press:  03 August 2022

Hamed Najafi*
Affiliation:
Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad 91775, Iran E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Let $C_{\||.\||}$ be an ideal of compact operators with symmetric norm $\||.\||$ . In this paper, we extend the van Hemmen–Ando norm inequality for arbitrary bounded operators as follows: if f is an operator monotone function on $[0,\infty)$ and S and T are bounded operators in $\mathbb{B}(\mathscr{H}\;\,)$ such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a=\{z\in \mathbb{C} \ | \ {\rm{re}}(z)\geq a\}$ , then

\begin{equation*}\||f(S)X-Xf(T)\|| \leq\;f'(a) \ \||SX-XT\||,\end{equation*}
for each $X\in C_{\||.\||}$ . In particular, if ${\rm{sp}}(S), {\rm{sp}}(T) \subseteq \Gamma_a$ , then
\begin{equation*}\||S^r X-XT^r\|| \leq r a^{r-1} \ \||SX-XT\||,\end{equation*}
for each $X\in C_{\||.\||}$ and for each $0\leq r\leq 1$ .

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

1. Introduction

Let $\mathbb{B}(\mathscr{H}\;\,)$ be the algebra of all bounded operators on a complex separable Hilbert space $\mathscr{H}$ . Let $\mathcal{C}(\mathscr{H}\;\,)$ be the algebra of all compact operators on $\mathscr{H}$ , and $C_{{\rm{fin}}}(\mathscr{H}\;\,)$ denotes the set of all finite rank operators on $\mathscr{H}$ . A norm $\||.\||$ on $C_{{\rm{fin}}}(\mathscr{H}\;\,)$ is called to be unitarily invariant or a symmetric norm if

\begin{equation*}\||UTV\||=\||T\||,\end{equation*}

for every $T\in C_{{\rm{fin}}}(\mathscr{H}\;\,)$ and any unitaries U, V, on $\mathscr{H}$ . By the relation between the symmetric gauge functions and the unitarily invariant norms, we can define $\||T\||$ for all $T\in \mathbb{B}(\mathscr{H}\;\,)$ , see [Reference Hiai6, Section 2]. Let

\begin{equation*}I_{\||.\||}=\{T\in \mathbb{B}(\mathscr{H}\;\,)\;:\; \ \||T\||<\infty\},\end{equation*}

and $C_{\||.\||}$ be the norm closure of $C_{{\rm{fin}}}(\mathscr{H}\;\,)$ in $I_{\||.\||}$ . It is known that $C_{\||.\||}$ is a Banach space with respect to the norm $\||.\||$ and $C_{\||.\||}\subseteq \mathcal{C}(\mathscr{H}\;\,)$ . Also,

\begin{equation*}\||SXT\|| \leq \|S\| \ \||X\|| \ \|T\|,\end{equation*}

for all $S, T \in \mathbb{B}(\mathscr{H}\;\,)$ and all $X \in C_{\||.\||}$ ; see [Reference Hiai6, Corollary 3.1]. For example, the Schatten p norms are unitarily invariant. Let $S_p$ denote the Schatten ideal of compact operators with norms $\|.\|_p$ for each $1\leq p< \infty$ . For more details about unitarily invariant norms, we refer the reader to [Reference Gohberg and Krein4, Reference Hiai6, Reference Simon13].

Let J be a subset of $\mathbb{R}$ . We say that a continuous function f on an interval J is operator monotone, if $A\leq B$ implies that $f(A)\leq\;f(B)$ for all self-adjoint operators A and B, whose spectrums are contained in J. Ando and van Hemmen [Reference van Hemmen and Ando15] showed that if f is an operator monotone function on $[0,\infty)$ and A and B are positive operators and ${\rm{sp}}(A + B) \subseteq [2a,\infty)$ for some positive scalar a, then

\begin{equation*}\||f(A)-f(B)\|| \leq \left(\frac{f(a)-f(0)}{a}\right) \ \||A-B\||,\end{equation*}

for every symmetric norm $\||.\||$ . In continuation, Kittaneh and Kosaki [Reference Kittaneh and Kosaki10] improved this inequality and showed that if f is an operator monotone function on $[0,\infty)$ and A and B are two positive operators that ${\rm{sp}}(A)\subseteq [a,\infty)$ and ${\rm{sp}}(B) \subseteq [b,\infty)$ , then

(1.1) \begin{equation}\||f(A)X-Xf(B)\|| \leq d_{a,b}(f) \ \||AX-XB\||,\end{equation}

where $\||.\||$ is a symmetric norm, $X\in C_{\||.\||}$ , and

\begin{equation*}d_{a,b}(f)=\begin{cases}\dfrac{f(b)-f(a)}{b-a} & \text{if } a\neq b \\[9pt] f'(a) & \text{if } a=b\end{cases}\end{equation*}

Let $\Gamma_a=\{z\in \mathbb{C} \ | \ {\rm{re}}(z)\geq a\}$ for each $a\in \mathbb{R}$ . In this paper, by a different argument than those of [Reference Kittaneh and Kosaki10, Reference van Hemmen and Ando15], we extend Inequality (1.1) for arbitrary bounded operators. Indeed, we show that if f is an operator monotone function on $[0,\infty)$ and S and T are bounded operators such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a$ , then

\begin{equation*}\||f(S)X-Xf(T)\|| \leq\;f'(a) \ \||SX-XT\||,\end{equation*}

for each symmetric norm $\||.\||$ and each $X\in C_{\||.\||}$ . In particular, for any bounded operators S, T with ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a$ , we have

\begin{equation*}\||S^r X-XT^r\|| \leq r a^{r-1} \ \||SX-XT\||,\end{equation*}

for each $X\in C_{\||.\||}$ and for each $0\leq r\leq 1$ .

2. Operator Lipschitz functions

Let $\Phi\;:\;\mathbb{B}(\mathscr{H}\;\,)\to \mathbb{B}(\mathscr{H}\;\,)$ be a linear map. Let

\begin{equation*}\|\Phi\|=\sup\{\|\Phi(T)\|\;:\; \|T\|\leq 1\},\end{equation*}
\begin{equation*}\|\Phi\|_1=\sup\{\|\Phi(T)\|_1\;:\; \|T\|_1\leq 1\},\end{equation*}

It is well known that if $\|\Phi\|=\|\Phi\|_1=d$ , then

(2.1) \begin{equation}\||\Phi(X)\||\leq d \||X\||,\end{equation}

for all $X\in C_{\||.\||}$ . For details, see the first part of proof of [Reference Hiai and Kosaki7, Proposition 2.7.].

Let $A(\mathbb{D})$ be the disk algebra of all continuous complex-valued functions on the unit disk $\mathbb{D}$ , which are holomorphic in the interior of $\mathbb{D}$ . It is well known that any function in $A(\mathbb{D})$ acts on the set of all contraction operators in $\mathbb{B}(\mathscr{H}\;\,)$ .

A continuous function f on the unit disk $\mathbb{D}$ is called operator Lipschitz with constant d, if

(2.2) \begin{equation} || f (S)-f (T)|| \leq d \ ||S-T||,\end{equation}

for all normal contraction operators T and S on any Hilbert space $\mathscr{H}$ .

Kissin and Shulman in [Reference Kissin and Shulman9] proved that if $f\in A(\mathbb{D})$ is an operator Lipschitz function with constant d, then

\begin{equation*} || f (S)-f (T)|| \leq d \ ||S-T||,\end{equation*}

for all arbitrary contraction operators S and T. Moreover, by using the interpolation theory, they proved that if $f\in A(\mathbb{D})$ is an operator Lipschitz function with constant d, then

\begin{equation*} || f (T)-f (S)||_p \leq d \ ||T-S||_p,\end{equation*}

for any $1\leq p< \infty$ and any contraction operators S and T with $S-T\in S_p$ ; see also [Reference Kissin, Potapov, Shulman and Sukochev8, Theorem 6.4].

We can extend the results of [Reference Kissin and Shulman9] for a unitarily invariant norm ideals by using the majorization property that state in the first part of this section. Although, the proof of the following theorem is similar to [Reference Kissin and Shulman9, Theorem 4.2.], for the convenience of the reader we prove the following theorem. For more results on Lipschitz-type estimates for general symmetrically normed ideals, we refer the reader to [Reference Skripka and Tomskova14].

Theorem 2.1. Let $f \in A(\mathbb{D})$ be operator Lipschitz with constant d. Then, for arbitrary contraction operators S and T and an arbitrary operator $X\in C_{\||.\||}$ , we have

\begin{equation*}\||f (S)X-X f (T)\|| \leq d \ \||SX-XT\||.\end{equation*}

Proof. First, assume that $\sigma(S)\cap \sigma(T)=\varnothing$ . As the operator $\Delta = L_S -R_T$ on $\mathbb{B}(\mathscr{H}\;\,)$ is invertible, we can consider the operator $F = (L_{f (S)}-R_{f (T)})\Delta^{-1}$ . The proof of [Reference Kissin and Shulman9, Theorem 4.2.] shows that $\|F\|\leq d$ on $\mathbb{B}(\mathscr{H}\;\,)$ and $\|F|_{S_1}\|_1\leq d$ . Now, by interpolation theory (equation (2.1)), for each unitarily invariant norm $\||.\||$ and for each $X\in C_{\|||.\||}$ , we have

\begin{equation*}\||F(X)\||\leq d\ \||X\||.\end{equation*}

The definition of F implies that for each $S,T\in \mathbb{B}(\mathscr{H}\;\,)$ with $\sigma(S)\cap \sigma(T)=\varnothing$ and for each $X\in C_{\||.\||}$ , we have

(2.3) \begin{equation}\||f (S)X-X f (T)\|| \leq d \ \||SX-XT\||.\end{equation}

Now, if ${\rm{dim}}(\mathscr{H}\;\,)<\infty$ and $S,T\in \mathbb{B}(\mathscr{H}\;\,)$ , we can see that there exist contractions $S_n$ such that $\sigma(S_n)\cap \sigma(T)=\varnothing$ and $\|S_n-S\|\to 0$ . We have

\begin{eqnarray*}\||f (S)X-Xf (T)\|| &\leq & \ \||f(S_n)X-Xf(T)\||+\||f(S_n)X-f(S)X\||\\[5pt]&\leq & \ \||f(S_n)X-Xf(T)\||+ \|f(S_n)-f(S)\| \ \||X\||\\[5pt]&\leq & d \ \||S_nX-XT\||+ \|f(S_n)-f(S)\| \ \||X\||.\end{eqnarray*}

By the previous observation, we can prove (2.3) for finite rank operators S, T.

In the general case, let $P_n$ be an increasing sequence of finite-dimensional projections such that $P_n \rightarrow I$ in the strong operator topology. We have

\begin{eqnarray*} \||f (P_nS)XP_n-P_nXf (TP_n)\||&\leq & d \ \||P_nS XP_n - P_n XT P_n\||\\[5pt] &=& d\ \||P_n(SX-XT)P_n\||\\[5pt] &\leq & d\ ||P_n||\ \||SX-XT\|| \ ||P_n\||\\[5pt] &\leq & d\ \||SX-XT\||. \end{eqnarray*}

Since $C_{\||.\||}$ is an ideal of compact operators, $f(S)X-Xf(T)$ is compact. Now $f (P_nS)XP_n-P_nXf (TP_n) \rightarrow f (S)X-Xf(T)$ in the strong operator topology and $f (S)X-Xf(T)$ is compact, so by the noncommutative Fatou’s lemma [Reference Simon13], we have

\begin{equation*}\||f (S)X-Xf(T)\||\leq \sup_{n \in \mathbb{N}} \ \||f (P_nS)XP_n-P_nXf (TP_n)\|| \leq d\ \||SX-XT\||.\end{equation*}

Let $\mathcal{O}_r(z_0)=\{z\in \mathbb{C}\;:\; |z-z_0|\leq r\}$ be a closed disk in $\mathbb{C}$ . We can see that $f\in A(\mathbb{D})$ is an operator Lipschitz function with constant d, if and only if $g(z)=f\left(\frac{1}{r}(z- z_0)\right)$ is an operator Lipschitz function with constant d on $\mathcal{O}_r(z_0)$ . Hence, we have the following corollary.

Corollary 2.2. Let f be an analytic function on the disk $\mathcal{O}_r(z_0)$ such that

(2.4) \begin{equation} || f (S)-f (T)|| \leq d \ ||S-T||,\end{equation}

for all normal operators T,S on any Hilbert space $\mathscr{H}$ with ${\rm{sp}}(S),{\rm{sp}}(T)\subseteq \mathcal{O}_r(z_0)$ . Then, for arbitrary operators S and T with ${\rm{sp}}(S),{\rm{sp}}(T)\subseteq \mathcal{O}_r(z_0)$ and an arbitrary operator $X\in C_{\||.\||}$ , we have

\begin{equation*}\||f (S)X-X f (T)\|| \leq d \ \||SX-XT\||.\end{equation*}

3. Operator monotone functions

Let $\Pi_+$ be the upper half-plane and $\Pi_-$ be the lower half-plane. Let $\Omega =\Pi_{+} \cup \Pi_{-} \cup [0,\infty)$ . Let f be an operator monotone function on $[0,\infty)$ . The Löwner theorem [Reference Löwner11] states that f is analytic on $(0,\infty)$ and has an analytic continuation to $\Omega$ , which again we denote by f, such that $f(\Pi_+)\subseteq \Pi_+$ . Let $S\in \mathbb{B}(\mathscr{H}\;\,)$ with ${\rm{sp}}(S) \subseteq \Omega \setminus \{0\}$ and f be an operator monotone function on $[0,\infty)$ . Since f is analytic on $\Omega$ , we can define the operator f(S) by the integral representation:

(3.1) \begin{equation}f(S)=\frac{1}{2\pi i}\int_{\gamma}f(z)(z-S)^{-1}\ dz,\end{equation}

where $\gamma$ is a closed rectifiable curve in $\Omega$ such that ${\rm{sp}}(S) \subset \rm{ins}(\gamma)$ .

Let $P[0,\infty)$ denote the set of all positive operator monotone functions defined in the positive half-line and consider the convex set:

\begin{equation*}\mathcal{P}= \{ f \in P[0,\infty) | f(1) = 1 \}.\end{equation*}

Hansen in [Reference Hansen5] showed that $\mathcal{P}$ is compact in the topology of point-wise convergence and extreme points in $\mathcal{P}$ are necessarily of the form:

\begin{eqnarray*}f_{\alpha}(t)=\frac{t}{\alpha +(1-\alpha)t},\end{eqnarray*}

where $0\leq \alpha \leq 1$ . The next theorem shows that the family $\mathcal{P}$ is generated in the uniformly compact topology by the convex hull of its extreme points.

Theorem 3.1. [Reference Najafi12, Theorem 3.1] Let f be a nonnegative operator monotone function on $[0,\infty)$ such that $f(1)=1$ . Then, there exists a sequence $f_{n}$ which is uniformly convergent to f on every compact subset of $\Omega$ . Moreover, for each n the following property hold:

(3.2) \begin{equation} f_{n}=\sum_{i=1}^{k_n}\gamma_i f_{\alpha_i},\end{equation}

where $\alpha_1, \alpha_2,\ldots,\alpha_{k_n}$ and $\gamma_1, \gamma_2,\ldots,\gamma_{k_n}$ are positive scalars such that $\sum_{i=1}^{k_n}\gamma_i=1$ .

In the last theorem, since $f_{n}$ converges uniformly on compact sets to f, we can conclude that $f_n^{'}$ is also uniformly convergent to $f'$ on compact sets. The following lemma will be useful.

Lemma 3.2. Let $0\leq \alpha \leq 1$ , and let S,T be bounded invertible operators such that $\left({\rm{sp}}(S) \cup {\rm{sp}}(T)\right) \cap $ $(-\infty,0)=\emptyset$ . Then,

\begin{equation*} f_{\alpha}(S)- f_{\alpha}(T)=\alpha \ f_{1-\alpha}(S^{-1})(S-T) f_{1-\alpha}(T^{-1}).\end{equation*}

Proof. We can see that $f_{\alpha}(t)=(\alpha t^{-1}+(1-\alpha))^{-1}$ . Since $\alpha S^{-1}+(1-\alpha)$ and $\alpha T^{-1}+(1-\alpha)$ are invertible, so

\begin{eqnarray*} f_{\alpha}(S)- f_{\alpha}(T)&=&(\alpha S^{-1}+(1-\alpha))^{-1}-(\alpha T^{-1}+(1-\alpha))^{-1}\\[5pt]&=& \alpha (\alpha S^{-1}+(1-\alpha))^{-1}( T^{-1}-S^{-1})(\alpha T^{-1}+(1-\alpha))^{-1}\\[5pt]&=& \alpha (\alpha S^{-1}+(1-\alpha))^{-1}S^{-1}(S -T)T^{-1}(\alpha T^{-1}+(1-\alpha))^{-1}\\[5pt]&=& \alpha (\alpha+(1-\alpha)S)^{-1}(S -T)(\alpha+(1-\alpha)T)^{-1}\\[5pt]&=&\alpha \ f_{1-\alpha}(S^{-1})(S-T) f_{1-\alpha}(T^{-1}).\end{eqnarray*}

Proposition 3.3. Let f be an operator monotone function on $[0,\infty)$ . Let S and T be bounded normal operators in $\mathbb{B}(\mathscr{H}\;\,)$ such that ${\rm{sp}}(S) \subseteq \Gamma_a$ and ${\rm{sp}}(T) \subseteq \Gamma_b$ for some $a,b>0$ . Then,

\begin{equation*}\|f(S)-f(T)\| \leq d_{a,b}(f) \ \|S-T\|,\end{equation*}

for each $X\in C_{\||.\||}$ .

Proof. Without loss of generality, we can assume that f is nonconstant. Let $T_{\alpha}=\alpha+(1-\alpha)T$ and $S_{\alpha}=\alpha+(1-\alpha)S$ for each $0\leq \alpha \leq 1$ . As ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a$ , we can conclude that $T_{\alpha},S_{\alpha}$ are invertible for each $0\leq \alpha \leq 1$ . Moreover,

\begin{equation*}S_{\alpha}^*S_{\alpha}= \alpha^2+(1-\alpha)^2 S^*S+ \alpha(1-\alpha)(S+S^*).\end{equation*}

Since S is normal, $S+S^* \geq 2 a$ and $S^*S \geq a^2$ . Therefore,

\begin{eqnarray*}S_{\alpha}^*S_{\alpha}&\geq& \alpha^2+(1-\alpha)^2 S^*S+2 a \alpha(1-\alpha)\\[5pt]&\geq& \alpha^2+(1-\alpha)^2 a^2+2 a \alpha(1-\alpha)\\[5pt]&=& (\alpha+ (1-\alpha)a)^{2}.\end{eqnarray*}

Hence, $(S_{\alpha}^*S_{\alpha})^{-1} \leq (\alpha+ (1-\alpha)a)^{-2}$ , and so

\begin{equation*}||S_{\alpha}^{-1}||=||S_{\alpha}^{*-1}S_{\alpha}^{-1}||^{\frac{1}{2}}=||(S_{\alpha}^*S_{\alpha})^{-1}||^{\frac{1}{2}}\leq (\alpha+ (1-\alpha)a)^{-1}.\end{equation*}

A similar argument implies that $||T_{\alpha}^{-1}||\leq (\alpha+ (1-\alpha)b)^{-1}.$ By Lemma 3.2, we have

\begin{eqnarray*}|| f_{\alpha}(S)- f_{\alpha}(T)||&=& \alpha ||S_{\alpha}^{-1}(S-T)T_{\alpha}^{-1}||\\[5pt]&\leq & \alpha ||S_{\alpha}^{-1}|| \ ||S-T|| \ ||T_{\alpha}^{-1}||\\[5pt]&\leq & \frac{\alpha}{(\alpha+ (1-\alpha)a)(\alpha+ (1-\alpha)b)} ||S-T||\\[5pt] &=& d_{a,b}( f_{\alpha}) ||S-T||.\end{eqnarray*}

Now, assume that f is an arbitrary operator monotone function on $[0,\infty)$ . By replacing f(t) with $\frac{f(t)-f(0)}{f(1)-f(0)}$ , we can assume that f is nonnegative and $f(1)=1$ (as f is non-constant, Lemma 3.2. in [Reference Bendat and Sherman2], implies that $f(1)\neq f(0)$ ). By Theorem 3.1, there exists a sequence $\{f_{n}\}$ in $\mathcal{P}$ that satisfies (3.2) and is uniformly convergent to f on compact sets. If

\begin{equation*} f_{n}=\sum_{i=1}^{k_n}\gamma_i f_{\alpha_i},\end{equation*}

then $d_{a,b}(f_n)=\sum_{i=1}^{k_n}\gamma_i d_{a,b}(f_{\alpha_i})$ and we have

\begin{eqnarray*}||f_n(S)- f_n(T)||&=& || \sum_{i=1}^{k_n}\gamma_i f_{\alpha_i}(S)-\sum_{i=1}^{k_n}\gamma_i f_{\alpha_i}(T)||\\[5pt]&\leq & \sum_{i=1}^{k_n}\gamma_i \ || f_{\alpha_i}(S)- f_{\alpha_i}(T)||\\[5pt]&\leq & \sum_{i=1}^{k_n}\gamma_i d_{a,b}( f_{\alpha_i}) \ ||S-T||\\[5pt] &=&d_{a,b}(f_n) ||S-T||.\end{eqnarray*}

Letting $n\to \infty$ to get

(3.3) \begin{equation}||f(S)-f(T)||\leq d_{a,b}(f) ||S-T||.\end{equation}

We obtain the following theorem.

Theorem 3.4. Let f be an operator monotone function on $[0,\infty)$ . Let S and T be bounded operators in $\mathbb{B}(\mathscr{H}\;\,)$ such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a$ for some $a>0$ . Then,

\begin{equation*}\||f(S)X-Xf(T)\|| \leq f'(a) \ \||SX-XT\||,\end{equation*}

for each $X\in C_{\||.\||}$ .

Proof. Let S, T be arbitrary and ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \{z\in \mathbb{C} \ | \ {\rm{re}}(z)> a\}$ . Since ${\rm{sp}}(S)$ and ${\rm{sp}}(T)$ are compact, there exists a closed disk $\mathcal{O} \subset \Gamma_a$ such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \mathcal{O}$ . Proposition 3.3 shows that f is operator Lipschitz with constant $f'(a)$ on the closed disk $\mathcal{O}$ . Hence, Corollary 2.2 implies that

\begin{equation*} \||f(S)X-Xf(T)\||\leq f'(a) \||SX-XT\||,\end{equation*}

for any symmetric norm $\||.\||$ and any $X\in C_{\||.\||}$ .

In the general case, the assumptions ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a$ imply that ${\rm{sp}}(S+1/n),{\rm{sp}}(T+1/n) \subseteq \{z\in \mathbb{C} \ | \ {\rm{re}}(z)> a\}$ for each $n\in \mathbb{N}$ . We use the noncommutative Fatou’s lemma to get

\begin{eqnarray*}\||f(S)X-Xf(T)\|| &\leq & \sup_{n\in \mathbb{N}} \ \||f(S+1/n)X-Xf(T+1/n)\|| \\[5pt] & \leq & f'(a) \ \sup_{n\in \mathbb{N}} \||(S+1/n)X-X(T+1/n)\||\\[5pt] &=& f'(a) \ \limsup_n \||(S+1/n)X-X(T+1/n)\||\\[5pt] &=& f'(a) \||SX-XT\||.\end{eqnarray*}

Corollary 3.5. Let f be an operator monotone function on $[0,\infty)$ . Let S and T be bounded operators in $\mathbb{B}(\mathscr{H}\;\,)$ such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a$ for some $a>0$ and $T-S \in C_{|||.|||}$ . Then,

\begin{equation*}\||f(S)-f(T)\|| \leq\;f'(a) \ \||S-T\||.\end{equation*}

Proof. Let $P_n$ be an increasing sequence of finite-dimensional projections such that $P_n \rightarrow I$ in the strong operator topology. We have

\begin{eqnarray*} |||f (P_nS)P_n-P_nf (TP_n)|||&\leq & f'(a) |||P_nS P_n - P_n T P_n|||\\[5pt] &=& f'(a) |||P_n(S-T)P_n|||\\[5pt] &\leq & f'(a) ||P_n||\ |||S-T||| \ ||P_n|||\\[5pt] &\leq & f'(a) |||S-T|||. \end{eqnarray*}

Since f is an analytic function and $S-T$ is a compact operator, $f(S)-f(T)$ is compact. Now $f (P_nS)P_n-P_nf (TP_n) \rightarrow f (S)-f(T)$ in the strong operator topology and $f (S)-f(T)$ is compact, so by the noncommutative Fatou’s lemma, we have

\begin{equation*}|||f (S)-f(T)|||\leq \sup_{n \in \mathbb{N}} \ |||f (P_nS)P_n-P_nf (TP_n)||| \leq\;f'(a) |||S-T|||.\end{equation*}

As $t\mapsto t^r$ and $t\mapsto \log(t+1)$ are operator monotone functions on $[0,\infty)$ for each $0\leq r \leq 1$ , we obtain the following corollaries.

Corollary 3.6. Let $0\leq r \leq 1$ , and let S,T be bounded operators such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a$ . Then

\begin{equation*}\||S^r X-XT^r\|| \leq r a^{r-1} \ \||SX-XT\||,\end{equation*}

for each $X\in C_{\||.\||}$ . In particular, if $T-S\in C_{\||.\||}$ , then

\begin{equation*}\||S^r-T^r\|| \leq r a^{r-1} \ \||S-T\||.\end{equation*}

Corollary 3.7. If S and T are bounded operators such that ${\rm{sp}}(S),{\rm{sp}}(T) \subseteq \Gamma_a$ , then

\begin{equation*}\||\log(S+1) X-X\log(T+1)\|| \leq \frac{1}{a+1} \ \||SX-XT\||,\end{equation*}

for each $X\in C_{\||.\||}$ .

Acknowledgments

The author wishes to express her gratitude to Professor Shulman and Professor Kissin for suggestions in the first version of this paper. Also, the author would like to sincerely thank the referee for his/her valuable comments and useful suggestions.

References

Aleksandrov, A. B. and Peller, V. V., Functions of perturbed unbounded self-adjoint operators. Operator Bernstein type inequalities, Indiana Univ. Math. J. 59 (4) (2010), 14511490.Google Scholar
Bendat, J. and Sherman, S., Monotone and convex operator functions, Trans. Am. Math. Soc. 79 (1955), 5871.CrossRefGoogle Scholar
Bhatia, R., First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl. 208 (1994), 367376.Google Scholar
Gohberg, I. C. and Krein, M. G., Introduction to the theory of linear non-selfadjoint operators in Hilbert spaces (Nauka, Moscow, 1965).Google Scholar
Hansen, F., The fast track to Loewner’s theorem, Linear Algebra Appl. 438 (2013), 45574571.CrossRefGoogle Scholar
Hiai, F., Linear operators , Banach Center Publications, vol. 38 (Polish Academy of Sciences, Warszawa, 1997), 119181 Google Scholar
Hiai, F. and Kosaki, H., Means of Hilbert space operators , Lecture Notes in Mathematics, vol. 1820 (Springer-Verlag, Berlin, 2003).Google Scholar
Kissin, E., Potapov, D., Shulman, V. and Sukochev, F., Operator smoothness in Schatten norms for functions of several variables: Lipschitz conditions, differentiability and unbounded derivations, Proc. London Math. Soc. 108 (3) (2014), 327349.Google Scholar
Kissin, E. and Shulman, V. S., On fully operator Lipschitz functions, J. Funct. Anal. 253 (2007), 711728.Google Scholar
Kittaneh, F. and Kosaki, H., Inequalities for the Schatten p-norm V, Publ. Res. Inst. Math. Sci. 23 (1986), 433443.Google Scholar
Löwner, K., Über monotone Matrix funktionen, Math. Z. 38 (1934), 177216.Google Scholar
Najafi, H., Some operator inequalities for Hermitian Banach $*$ -algebras, Math. Scand. (preprint).Google Scholar
Simon, B., Trace ideals and their applications (AMS, 2005).Google Scholar
Skripka, A. and Tomskova, A., Multilinear operator integrals: theory and applications, Lecture Notes in Mathematics, vol. 2250 (Springer International Publishing, 2019).Google Scholar
van Hemmen, J. L. and Ando, T., An inequality for trace ideals, Commun. Math. Phys. 76 (1980), 143148.Google Scholar