No CrossRef data available.
Article contents
ABELIAN IDEALS IN A COMPLEX SIMPLE LIE ALGEBRA
Part of:
Lie algebras and Lie superalgebras
Published online by Cambridge University Press: 10 June 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this note, we give a new simple construction of all maximal abelian ideals in a Borel subalgebra of a complex simple Lie algebra. We also derive formulas for dimensions of certain maximal abelian ideals in terms of the theory of Borel de Siebenthal.
MSC classification
Primary:
17B22: Root systems
- Type
- Research Article
- Information
- Copyright
- Copyright © Glasgow Mathematical Journal Trust 2016
References
REFERENCES
1.
Borel, A. and de Siebenthal, J., Les sous-groupes fermes de rang maximum de Lie clos, Comment. Math. Helv
23 (1949), 200–221.Google Scholar
3.
Burns, J. M. and Clancy, M. J., Weight sum formula in Lie algebra representations, J. Algebra
257
(1) (2002), 1–12.CrossRefGoogle Scholar
4.
Cellini, P. and Papi, P., Abelian ideals of Borel subalgebras and affine Weyl groups, Adv. Math.
187
(2) (2004), 320–361.CrossRefGoogle Scholar
5.
Chari, V., Dolbin, R. and Ridenour, T., Ideals in parabolic subalgebras of simple Lie algebras, Contemp. Math., Amer. Math. Soc., Providence, RI, 490 (2009), 47–60.CrossRefGoogle Scholar
6.
Humphreys, J.
Introduction to Lie algebras and representation theory (Springer, New York, 1997).Google Scholar
7.
Kostant, B., Eigenvalues of a Laplacian and commutative Lie subalgebras, Topology, 3
(2) (1965), 147–159.CrossRefGoogle Scholar
8.
Kostant, B., The set of abelian ideals of a Borel subalgebra, Cartan decompositions, and discrete series representations, Internat. Math. Res. Notices
1
(5) (1998), 225–252.Google Scholar
9.
Panyushev, D. and Röhrle, G. C., Spherical orbits and abelian ideals, Adv. Math.
159
(2) (2001), 229–246.Google Scholar
10.
Röhrle, G., On normal abelian subgroups in parabolic groups, Ann. de l'institut Fourier
5
(5) (1998), 1455–1482.Google Scholar
11.
Suter, R., Abelian ideals in a Borel subalgebra of a complex simple Lie algebra, Inventiones Math.
156
(1) (2004), 175–221.CrossRefGoogle Scholar
12.
Tamaru, H., Homogeneous Einstein manifolds attached to graded Lie algebras, Mathematische Zeitschrift
259
(1) (2008), 171–186.Google Scholar
13.
Wolf, J. A., Spaces of constant curvature - fifth edition., (Publish or perish, Wilmington, DE, 1984).Google Scholar
You have
Access