Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T15:46:04.042Z Has data issue: false hasContentIssue false

Zircon geochronology of intrusive rocks from Cap de Creus, Eastern Pyrenees

Published online by Cambridge University Press:  11 March 2014

ELENA DRUGUET*
Affiliation:
Departament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
ANTONIO CASTRO
Affiliation:
UA Petrología Experimental, CSIC-Universidad de Huelva, Facultad de Ciencias Experimentales, Campus de El Carmen, 21071 Huelva, Spain
MARTIM CHICHORRO
Affiliation:
GEOBIOTEC, FCT, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
M. FRANCISCO PEREIRA
Affiliation:
Departamento Geociências, ECT, Universidade de Évora, IDL Apt.94, 7001-554 Évora, Portugal
CARLOS FERNÁNDEZ
Affiliation:
Departamento de Geodinámica y Paleontología, Facultad de Ciencias Experimentales, Universidad de Huelva, Campus de El Carmen, 21071 Huelva, Spain
*
Author for correspondence: [email protected]

Abstract

New petrological and U–Pb zircon geochronological information has been obtained from intrusive plutonic rocks and migmatites from the Cap de Creus massif (Eastern Pyrenees) in order to constrain the timing of the thermal and tectonic evolution of this northeasternmost segment of Iberia during late Palaeozoic time. Zircons from a deformed syntectonic quartz diorite from the northern Cap de Creus Tudela migmatitic complex yield a mean age of 298.8±3.8 Ma. A syntectonic granodiorite from the Roses pluton in the southern area of lowest metamorphic grade of the massif has been dated at 290.8±2.9 Ma. All the analysed zircons from two samples of migmatitic rocks yield inherited ages from the Precambrian metasedimentary protolith (with two main age clusters at c. 730–542 Ma and c. 2.9–2.2 Ga). However, field structural relationships indicate that migmatization occurred synchronously with the emplacement of the quartz dioritic magmas at c. 299 Ma. Thus, the results of this study suggest that subduction-related calc-alkaline magmatic activity in the Cap de Creus was coeval and coupled with D2 dextral transpression involving NNW–SSE crustal shortening during Late Carboniferous – Early Permian time (c. 299–291 Ma). Since these age determinations are within the range of those obtained for undeformed (or slightly deformed) calc-alkaline igneous rocks from NE Iberia, it follows that the Cap de Creus massif would represent a zone of intense localization of D2 transpression and subsequent D3 ductile wrenching that extended into the Lower Permian during a transitional stage between the Variscan and Cimmerian cycles.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ábalos, B., Carreras, J., Druguet, E., Escuder Viruete, J., Gómez Pugnaire, M. T., Lorenzo Álvarez, S., Quesada, C., Rodríguez Fernández, R. & Gil-Ibarguchi, J. I. 2002. Variscan and pre-Variscan tectonics. In The Geology of Spain (eds Gibbons, W. & Moreno, M. T.), pp. 155–83. London: Geological Society of London.CrossRefGoogle Scholar
Aguilar, C., Liesa, M., Castiñeiras, P. & Navidad, M. 2013. Late Variscan metamorphic and magmatic evolution in the eastern Pyrenees revealed by U–Pb age zircon dating. Journal of the Geological Society, London, published online 12 December 2013. doi: 10.1144/jgs2012-086.Google Scholar
Alfonso, P., Melgarejo, J. C., Yusta, I. & Velasco, F. 2003. Geochemistry of feldspars and muscovite in granitic pegmatite from the Cap de Creus field, Catalonia, Spain. The Canadian Mineralogist 41, 103–16.Google Scholar
Autran, A., Fonteilles, M. & Guitard, G. 1970. Relations entre les intrusions de granitoides, l'anatexie, et le métamorphisme régional considerées principalment du point de vue de l'eau: cas de la Chaine hercynienne des Pyrénées Orientales. Bulletin de la Société Géologique de France 7, 673731.Google Scholar
Bea, F. 1996. Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology 37, 521–52.Google Scholar
Carreras, J. 2001. Zooming on Northern Cap de Creus shear zones. Journal of Structural Geology 23, 1457–86.CrossRefGoogle Scholar
Carreras, J. & Capellà, I. 1994. Tectonic levels in the Palaeozoic basement of the Pyrenees: a review and a new interpretation. Journal of Structural Geology 16, 1509–24.Google Scholar
Carreras, J. & Druguet, E. 2013. Illustrated Field Guide to the Geology of Cap de Creus. Servei de Publicacions de la Universitat Autònoma de Barcelona, 123 pp.Google Scholar
Carreras, J., Druguet, E., Griera, A. & Soldevila, J. 2004. Strain and deformation history in a syntectonic pluton. The case of the Roses granodiorite (Cap de Creus, Eastern Pyrenees). In Flow Processes in Faults and Shear Zones (eds Alsop, G. I., Holdsworth, R. E., McCaffrey, K. J. W. & Hand, W.), pp. 307–19. Geological Society of London, Special Publication no. 224.Google Scholar
Carreras, J. & Losantos, M. 1982. Geological setting of the Roses granodiorite (E-Pyrenees, Spain). Acta geológica Hispánica 17 (4), 219–25.Google Scholar
Castiñeiras, P., Navidad, M., Liesa, M., Carreras, J. & Casas, J. M. 2008. U–Pb zircon ages (SHRIMP) for Cadomian and Early Ordovician magmatism in the Eastern Pyrenees: new insights into the pre-Variscan evolution of the northern Gondwana margin. Tectonophysics 461, 228–39.Google Scholar
Choulet, F., Faure, M., Cluzel, D., Chen, Y., Lin, W. & Wang, B. 2012. From oblique accretion to transpression in the evolution of the Altaid collage: new insights from West Junggar, northwestern China. Gondwana Research 21, 530–47.Google Scholar
Cumming, G. L. & Richards, J. R. 1975. Ore lead isotope ratios in a continuously changing earth. Earth and Planetary Science Letters 28, 155–71.CrossRefGoogle Scholar
Damm, K., Harmon, R. S., Heppner, P. M. & Dornseipen, U. 1992. Stable isotope constraints of the Cabo de Creus garnet±tourmaline pegmatites, massif des Alberes, Eastern Pyrenees, Spain. Geological Journal 27, 7686.Google Scholar
Debon, F., Enrique, P. & Autran, A. 1995. Magmatisme hercynien. In Synthèse Géologique et Géophysique des Pyrénées. T.1: Cycle Hercynien (eds Barnolas, A. & Chiron, J. C.), pp. 361499. Orléans & Madrid: BRGM.Google Scholar
Debon, F. & Le Fort, P. 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh: Earth Sciences 73, 135–49.Google Scholar
De la Roche, H. 1978. La chimie des roches présentée et interpretée d'aprés la structure de leur facies minéral dans l'espace des variables chimiques: fonctions spécifiques et diagrammes qui s'en déduisent – application aux roches ignées. Chemical Geology 21, 6387.Google Scholar
Denèle, Y., Olivier, P., Gleizes, G. & Barbey, P. 2009. Decoupling between the middle and upper crust during transpression-related lateral flow: Variscan evolution of the Aston gneiss dome (Pyrenees, France). Tectonophysics 477, 244–61.CrossRefGoogle Scholar
Drost, K., Gerdes, A., Jeffries, T., Linnemann, U. & Storey, C. 2011. Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá-Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Research 19, 213–31.Google Scholar
Druguet, E. 2001. Development of high thermal gradients by coeval transpression and magmatism during the Variscan orogeny: insights from the Cap de Creus (Eastern Pyrenees). Tectonophysics 332, 275–93.Google Scholar
Druguet, E., Alsop, I. G. & Carreras, J. 2009. Coeval brittle and ductile structures associated with extreme deformation partitioning in a multilayer sequence. Journal of Structural Geology 31, 498511.Google Scholar
Druguet, E. & Carreras, J. 2006. Analogue modelling of syntectonic leucosomes in migmatitic schists. Journal of Structural Geology 28, 1734–47.Google Scholar
Druguet, E., Enrique, P. & Galán, G. 1995. Tipología de los granitoides y las rocas asociadas del complejo migmatítico de la Punta dels Farallons (Cap de Creus, Pirineo Oriental). Geogaceta 18, 199202.Google Scholar
Druguet, E. & Hutton, D. H. W. 1998. Syntectonic anatexis and magmatism in a mid-crustal transpression shear zone: an example from the Hercynian rocks of the eastern Pyrenees. Journal of Structural Geology 20, 905–16.CrossRefGoogle Scholar
Enrique, P. 1990. The Hercynian intrusive rocks of the Catalonian Coastal Ranges (NE Spain). Acta Geológica Hispánica 25, 3964.Google Scholar
Enrique, P. 2002. Intrusive rocks of the Pyrenees and Catalonian Coastal Ranges. In The Geology of Spain (eds Gibbons, W. & Moreno, M. T.), pp. 141–7. London: Geological Society of London.Google Scholar
Fernández, C., Becchio, R., Castro, A., Viramonte, J. M., Moreno-Ventas, I. & Corretge, L. G. 2008. Massive generation of atypical ferrosilicic magmas along the Gondwana active margin: implications for cold plumes and back-arc magma generation. Gondwana Research 14, 451–73.Google Scholar
Fernández-suárez, J., Gutiérrez-Alonso, G. & Jeffries, T. E. 2002. The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth and Planetary Science Letters 204, 7588.Google Scholar
Fernández-Suárez, J., Gutiérrez-Alonso, G., Pastor-Galán, D., Hofmann, M., Murphy, J. B. & Linnemann, U. 2013. The Ediacaran-Early Cambrian detrital zircon record of NW Iberia: possible sources and paleogeographic constraints. International Journal of Earth Sciences, published online 16 June 2013. doi: 10.1007/s00531-013-0923-3.Google Scholar
Furlong, K. P. & Kamp, P. J. J. 2009. The lithospheric geodynamics of plate boundary transpression in New Zealand: Initiating and emplacing subduction along the Hikurangi margin of New Zealand, and the Tectonic evolution of the Alpine Fault system. Tectonophysics 474, 449–62.Google Scholar
García-Arias, M., Corretgé, L. G. & Castro, A. 2012. Trace element behaviour during partial melting of Iberian orthogneisses: an experimental study. Chemical Geology 292–293, 117.Google Scholar
Gleizes, G., Leblanc, D. & Bouchez, J. L. 1997. Variscan granites of the Pyrenees revisited: their role as syntectonic markers of the orogen. Terra Nova 9, 3841.Google Scholar
Gleizes, G., Leblanc, D. & Bouchez, J. L. 1998. The main phase of the Hercynian orogeny of the Pyrenees is a dextral transpression. In Continental Transpressional and Transtensional Tectonics (eds Holdsworth, R. E., Strachan, R. A. & Dewey, J. F.), pp. 267–73. Geological Society of London, Special Publication no. 135.Google Scholar
Gutiérrez-Alonso, G., Murphy, B., Fernández-Suárez, J., Weil, A. B., Franco, M. P. & Gonzalo, J. C. 2011. Lithospheric delamination in the core of Pangea: Sm–Nd insights from the Iberian mantle. Geology 39, 155–8.Google Scholar
Heaman, L. M., Bowins, R. & Crocket, J. 1990. The chemical composition of igneous zircon studies: implications for geochemical tracer studies. Geochimica et Cosmochimica Acta 64, 1905–23.Google Scholar
Kelemen, P. B., Hanghøj, K. & Greene, A. 2003. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In The Crust (eds Holland, H. D., Turekian, K. K. & Rudnick, R. L.), pp. 593659. Treatise on Geochemistry, Vol. 3. Oxford: Elsevier–Pergamon.Google Scholar
Laumonier, B., Marignac, C. & Kister, P. 2010. Polymetamorphism and crustal evolution of the eastern Pyrenees during the Late Carboniferous Variscan orogenesis. Bulletin de la Société Géologique de France 181, 411–28.Google Scholar
Leblanc, D., Gleizes, G., Roux, L. & Bouchez, J. L. 1996. Variscan dextral transpression in the French Pyrenees: new data from the Pic des Trois-Seigneurs granodiorite and its country rocks. Tectonophysics 261, 331–45.CrossRefGoogle Scholar
Linnemann, U., Pereira, M. F., Jeffries, T., Drost, K. & Gerdes, A. 2008. Cadomian Orogeny and the opening of the Rheic Ocean: New insights in the diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461, 2143.Google Scholar
Martínez, F. J., Reche, J. & Iriondo, A. 2008. U–Pb Shrimp-RG zircon ages of Variscan igneous rocks from the Guilleries massif (NE Iberia pre-Mesozoic basement). Geological implications. Comptes Rendus Geoscience 340, 223–32.Google Scholar
Martínez Catalán, J. R. 2011. Are the oroclines of the Variscan belt related to late Variscan strike-slip tectonics? Terra Nova 23, 241–7.CrossRefGoogle Scholar
McCaffrey, R. 1992. Oblique plate convergence, slip vectors, and forearc deformation. Journal of Geophysical Research 97, 8905–15.Google Scholar
Nakamura, N. 1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–75.Google Scholar
Olivier, Ph., Gleizes, G. & Paquette, J. L. 2004. Gneiss domes and granite emplacement in an obliquely convergent regime: new interpretation of the Variscan Agly Massif (Eastern Pyrenees, France). In Gneiss Domes in Orogeny (eds Whitney, D. L., Teyssier, C. & Siddoway, C. S.), pp. 229242. Geological Society of America, Special Paper no. 380.Google Scholar
Olivier, Ph., Gleizes, G., Paquette, J. L. & Muñoz Sáez, C. 2008. Structure and U-Pb dating of the Saint-Arnac pluton and the Ansignan charnockite (Agly massif): a cross section from the upper to the middle crust of the Variscan Eastern Pyrenees. Journal of the Geological Society 165, 141–52.CrossRefGoogle Scholar
Pereira, M. F., Castro, A., Chichorro, M., Fernández, C., Díaz-Alvarado, J., Martí, M. & Rodríguez, C. 2014. Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (Southern Pyrenees). Gondwana Research 25, 290308.Google Scholar
Pereira, M. F., Chichorro, M., Williams, I. S. & Silva, J. B. 2008. Zircon U-Pb geochronology of paragneisses and biotite granites from the SW Iberian Massif (Portugal): evidence for a paleogeographic link between the Ossa-Morena Ediacaran basins and the West African craton, In The Boundaries of the West African Craton (eds Liégeois, J. P. & Nasser, E.), pp. 385408. Geological Society of London, Special Publication no. 297.Google Scholar
Pereira, M. F., Linnemann, U., Hofmann, M., Chichorro, M., Sola, A. R., Medina, J. & Silva, J. B. 2012 a. The provenance of Late Ediacaran and Early Ordovician siliciclastic rocks in the Southwest Central Iberian Zone: constraints from detrital zircon data on northern Gondwana margin evolution during the late Neoproterozoic. Precambrian Research 192–195, 166–89.Google Scholar
Pereira, M. F., Sola, A. R., Chichorro, M., Lopes, L., Gerdes, A. & Silva, J. B. 2012 b. North-Gondwana assembly, break-up and paleogeography: U–Pb isotope evidence from detrital and igneous zircons of Ediacaran and Cambrian rocks of SW Iberia. Gondwana Research 22, 866–81.Google Scholar
Roberts, M. P., Pin, C., Clemens, J. D. & Paquette, J. L. 2000. Petrogenesis of mafic to felsic plutonic rock associations: the calc-alkaline Quérigut complex, French Pyrenees. Journal of Petrology 41, 809–44.Google Scholar
Schäffer, H. J., Gebauer, D., Nägler, T. F. & Eguiluz, L. 1993. Conventional and ion-microprobe U-Pb dating of detrital zircons of the Tentudia Group (Serie Negra SW Spain): implications for zircon systematics, stratigraphy, tectonics and the Precambrian/Cambrian boundary. Contributions to Mineralogy and Petrology 113, 289–99.Google Scholar
Solé, J., Cosca, M., Sharp, Z. & Enrique, P. 2002. 40Ar/39Ar geochronology and stable isotope geochemistry of late-Hercynian intrusions from north-eastern Iberia with implications for argon loss in K-feldspar. International Journal of Earth Sciences 91, 865–81.Google Scholar
Speksnijder, A. 1985. Anatomy of a strike-slip fault controlled sedimentary basin, Permian of the Southern Pyrenees, Spain. Sedimentary Geology 44, 179223.Google Scholar
Squire, R. J., Campbell, I. H., Allen, C. M. & Wilson, C. J. L. 2006. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth and Planetary Science Letters 250, 116–33.Google Scholar
Stampfli, G. M., Hochard, C., Vérard, C., Wilhem, C. & vonRaumer, J. 2013. The formation of Pangea. Tectonophysics 593, 119.Google Scholar
Stampfli, G. M., vonRaumer, J. F. & Borel, G. D. 2002. Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement (eds Martínez Catalán, J. R., Hatcher, R. D. Jr., Arenas, R. & Díaz García, F.), pp. 263–80. Geological Society of America, Special Paper no. 364.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Talavera, C., Montero, P., Martínez Poyatos, D. & Williams, I. S. 2012. Ediacaran to Lower Ordovician age for rocks ascribed to the Schist–Graywacke Complex (Iberian Massif, Spain): Evidence from detrital zircon SHRIMP U–Pb geochronology. Gondwana Research 22, 928–42.Google Scholar
Vilà, M., Pin, C., Enrique, P. & Liesa, M. 2005. Telescoping of three distinct magmatic suites in an orogenic setting: generation of Hercynian igneous rocks of the Albera Massif (Eastern Pyrenees). Lithos 83, 97127.Google Scholar
Williams, I. S. & Claesson, S. 1987. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides. Contributions to Mineralogy and Petrology 97, 205–17.CrossRefGoogle Scholar