Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T06:15:31.098Z Has data issue: false hasContentIssue false

Zircon geochronology and trace element characteristics of eclogites and granulites from the Orlica-Śnieżnik complex, Bohemian Massif

Published online by Cambridge University Press:  06 November 2009

MICHAEL BRÖCKER*
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstraße 24, 48149 Münster, Germany
REINER KLEMD
Affiliation:
GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5a, 91054 Erlangen, Germany
ELLEN KOOIJMAN
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstraße 24, 48149 Münster, Germany
JASPER BERNDT
Affiliation:
Institut für Mineralogie, Universität Münster, Corrensstraße 24, 48149 Münster, Germany
ALEXANDER LARIONOV
Affiliation:
A. P. Karpinsky All-Russian Geological Research Institute (VSEGEI), Centre of Isotopic Research, Sredny Prospect 74, 199106 St Petersburg, Russia
*
Author for correspondence: [email protected]

Abstract

U–Pb zircon geochronology and trace element analysis was applied to eclogites and (ultra)high-pressure granulites that occur as volumetrically subordinate rock bodies within orthogneisses of the Orlica-Śnieżnik complex, Bohemian Massif. Under favourable circumstances such data may help to unravel protolith ages and yet-undetermined aspects of the metamorphic evolution, for example, the time span over which eclogite-facies conditions were attained. By means of ion-probe and laser ablation techniques, a comprehensive database was compiled for samples collected from prominent eclogite and granulite occurrences. The 206Pb/238U dates for zircons of all samples show a large variability, and no single age can be calculated. The protolith ages remain unresolved due to the lack of coherent age groups at the upper end of the zircon age spectra. The spread in apparent ages is interpreted to be mainly caused by variable and possibly multi-stage Pb-loss. Further complexities are added by metamorphic zircon growth and re-equilibration processes, the unknown relevance of inherited components and possible mixing of different aged domains during analysis. A reliable interpretation of igneous crystallization ages is not yet possible. Previous studies and the new data document the importance of a Carboniferous metamorphic event at c. 340 Ma. The geological significance of this age group is controversial. Such ages have previously either been related to peak (U)HP conditions, the waning stages of eclogite-facies metamorphism or the amphibolite-facies overprint. This study provides new arguments for this discussion because, in both rock types, metamorphic zircon is characterized by very low total REE abundances, flat HREE patterns and the absence of an Eu anomaly. These features strongly suggest contemporaneous crystallization of zircon and garnet and strengthen interpretations proposing that the Carboniferous ages document late-stage eclogite-facies metamorphism, and not amphibolite-facies overprinting.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anczkiewicz, R., Szczepański, J., Mazur, S., Storey, C., Crowley, Q., Villa, I. M., Thirlwall, M. F. & Jeffries, T. E. 2007. Lu–Hf geochronology and trace element distribution in garnet: Implications for uplift and exhumation of ultra-high pressure granulites in the Sudetes, SW Poland. Lithos 95, 363–80.CrossRefGoogle Scholar
Ashwal, L. D., Tucker, R. D. & Zinner, E. K. 1999. Slow cooling of deep crustal granulites and Pb-loss in zircon. Geochimica et Cosmochimica Acta 63, 2839–51.CrossRefGoogle Scholar
Bakun-Czubarow, N. 1968. Geochemical characteristics of eclogites from the environs of Nowa Wieś in the region of Śnieżnik Kłodzki. Archiwum Mineralogiczne 28, 244371.Google Scholar
Bakun-Czubarow, N. 1991 a. On the possibility of quartz pseudomorphs after coesite in the eclogite-granulite rock series of the Złote Mountains in the Sudetes (SW Poland). Archiwum Mineralogiczne 42, 516.Google Scholar
Bakun-Czubarow, N. 1991 b. Geodynamic significance of the Variscan HP eclogite-granulite series of the Złote Mountains in the Sudetes. Publications of the Institute of Geophysics, Polish Academy of Sciences A-19 (236), 215–42.Google Scholar
Bakun-Czubarow, N. 1992. Quartz pseudomorphs after coesite and quartz exsolutions in eclogite omphacites of the Złote Mountains in the Sudetes (SW Poland). Archiwum Mineralogiczne 48, 325.Google Scholar
Bakun-Czubarow, N. 1998. Ilmenite-bearing eclogites of the West Sudetes – their geochemistry and mineral chemistry. Archiwum Mineralogiczne 51, 29110.Google Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200, 155–70.CrossRefGoogle Scholar
Boynton, W. V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Developments in Geochemistry 2. Amsterdam: Elsevier.CrossRefGoogle Scholar
Bröcker, M., Cosca, M. & Klemd, R. 1997. Geochronologie von Eklogiten und assoziierten Nebengesteinen des Orlica–Snieznik Kristallins (Sudeten, Poland): Ergebnisse von U–Pb, Sm–Nd, Rb–Sr und Ar–Ar Untersuchungen. Terra Nostra 97 (5), 2930.Google Scholar
Bröcker, M. & Klemd, R. 1996. Ultrahigh-pressure metamorphism in the Śnieżnik Mountains (Sudetes, Poland): P–T constraints and geological implications. Journal of Geology 104, 417–33.CrossRefGoogle Scholar
Bröcker, M., Klemd, R., Cosca, M., Brock, W., Larionov, A. N. & Rodionov, N. 2009. The timing of eclogite-facies metamorphism and migmatization in the Orlica-Śnieżnik complex, Bohemian Massif: constraints from a geochronological multi-method study. Journal of Metamorphic Geology 27, 385403.CrossRefGoogle Scholar
Brueckner, H. K., Medaris, L. G. JR & Bakun-Czubarow, N. 1991. Nd and Sr age and isotope patterns from Variscan eclogites of the eastern Bohemian Massif. Neues Jahrbuch für Mineralogie, Abhandlungen 163, 169–96.Google Scholar
Cherniak, D. J. & Watson, E. B. 2001. Pb diffusion in zircon. Chemical Geology 172, 524.CrossRefGoogle Scholar
Compston, W., Williams, I. S. & Meyer, C. 1984. U–Pb geochronology of zircons from the lunar breccia 73217 using a sensitive high-resolution ion microprobe. Journal of Geophysical Research 89, B52534.CrossRefGoogle Scholar
Don, J. 2001. The relationship between the Gierałtów migmatites and the Śnieżnik granitogneisses within the Kletno fold. Mineralogical Society of Poland, Special Papers 19, 189–93.Google Scholar
Don, J., Dumicz, M., Wojciechowska, I. & Żelaźniewicz, A. 1990. Lithology and tectonics of the Orlica-Śnieżnik Complex, Sudetes – recent state of knowledge. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 179, 159–88.Google Scholar
Dumicz, M. 1993. The history of eclogites in the geological evolution of the Śnieżnik crystalline complex based on mesostructural analysis. Geologia Sudetica 27, 2148.Google Scholar
Ferriss, E. D. A., Essene, E. J. & Becker, U. 2008. Computanional study of the effects of pressure on the Ti-in-zircon geothermometer. European Journal of Mineralogy 20, 745–55.CrossRefGoogle Scholar
Ferry, J. M. & Watson, E. B. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154, 429–37.CrossRefGoogle Scholar
Fu, B., Page, F. Z., Cavosie, A. J., Fournelle, J., Kita, N. T., Lackey, J. S., Wilde, S. A., & Valley, J. W. 2008. Ti-in-zircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology 156, 197215.CrossRefGoogle Scholar
Gehrels, G. E., Valencia, V. & Pullen, A. 2006. Detrital zircon geochronology by laser ablation multicollector ICPMS at the Arizona LaserChron Center. In Geochronology: Emerging Opportunities (ed. Olszewski, T.), pp. 6776. Paleontological Society Short Course, Philadelphia, PA.Google Scholar
Gordon, S. M., Schneider, D. A., Manecki, M. & Holm, D. K. 2005. Exhumation and metamorphism of an ultrahigh-grade terrane: geochronometric investigations of the Sudete Mountains (Bohemia), Poland and Czech Republic. Journal of the Geological Society, London 162, 841–55.CrossRefGoogle Scholar
Griffin, W., Powell, W. J., Pearson, N. J. & O'Reilly, S. Z. 2008. Glitter: Data Reduction Software For Laser Ablation ICP-MS. In Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues (ed. Sylvester, P.), Appendix 2, pp. 308–11. Mineralogical Association of Canada, Short Course Series 40.Google Scholar
Harley, S. L., Kelly, N. M. & Möller, A. 2007. Zircon behaviour and the thermal histories of mountain chains. Elements 3, 2530.CrossRefGoogle Scholar
Jackson, S., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.CrossRefGoogle Scholar
Kaczmarek, M.-A., Müntener, O. & Rubatto, D. 2008. Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology 155, 295312.CrossRefGoogle Scholar
Klemd, R. & Bröcker, M. 1999. Fluid influence on mineral reactions in ultrahigh-pressure granulites: a case study in the Śnieżnik Mts. (West Sudetes, Poland). Contributions to Mineralogy and Petrology 136, 358–73.CrossRefGoogle Scholar
Klemd, R., Bröcker, M. & Schramm, J. 1995. Characterization of amphibolite-facies fluids of Variscan eclogites from the Orlica-Śnieżnik dome (Sudetes, SW Poland). Chemical Geology 119, 101–13.CrossRefGoogle Scholar
Koglin, N., Kostopoulos, D. & Reischmann, T. 2008. The Lesvos mafic–ultramafic complex, Greece: ophiolite or incipient rift? Lithos 108, 243–61.CrossRefGoogle Scholar
Kröner, A., Jaeckel, P., Hegner, E. & Opletal, M. 2001. Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Sněžník Complex). International Journal of Earth Sciences (Geologische Rundschau) 90, 304–24.CrossRefGoogle Scholar
Kryza, R., Pin, C. & Vielzeuf, D. 1996. High-pressure granulites from the Sudetes (south-west Poland): evidence of crustal subduction and collisional thickening in the Variscan Belt. Journal of Metamorphic Geology 14, 531–46.CrossRefGoogle Scholar
Lange, U., Bröcker, M., Armstrong, R., Trapp, E. & Mezger, K. 2005 a. Sm–Nd and U–Pb dating of high-pressure granulites from the Złote and Rychleby Mts (Bohemian Massif, Poland and Czech Republic). Journal of Metamorphic Geology 23, 133–45.CrossRefGoogle Scholar
Lange, U., Bröcker, M., Armstrong, R., Żelaźniewicz, A., Trapp, E. & Mezger, K. 2005 b. The orthogneisses of the Orlica-Śnieżnik complex (West Sudetes, Poland): geochemical characteristics, the importance of pre-Variscan migmatization and constraints on the cooling history. Journal of the Geological Society, London 162, 973–84.CrossRefGoogle Scholar
Lange, U., Bröcker, M., Mezger, K. & Don, J. 2002. Geochemistry and Rb–Sr geochronology of a ductile shear zone in the Orlica-Śnieżnik complex (West Sudetes, Poland). International Journal of Earth Sciences (Geologische Rundschau) 91, 1005–16.CrossRefGoogle Scholar
Larionov, A. N., Andreichev, V. A. & Gee, D. G. 2004. The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds , D. G. & Pease, V. L.), pp. 6974. Geological Society of London, Memoir no. 30.Google Scholar
Lee, J. K. W., Williams, I. S. & Ellis, D. J. 1997. Pb, U and Th diffusion in natural zircon. Nature 390, 159–62.CrossRefGoogle Scholar
Ludwig, K. R. 2005 a. SQUID 1.12 A User's Manual. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 22 pp. World Wide Web Address: http://www.bgc.org/klprogrammenu.html.Google Scholar
Ludwig, K. R. 2005 b. User's Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 71 pp.Google Scholar
Marheine, D., Kachlik, V., Maluski, H., Patocka, F. & Żelaźniewicz, A. 2002. The 40Ar/39Ar ages from the West Sudetes (NE Bohemian Massif); constraints on the Variscan polyphase tectonothermal development. In Paleozoic amalgamation of Central Europe (eds Winchester, J. A., Pharaoh, T. V. & Verniers, J.), pp. 133–55. Geological Society of London, Special Publication no. 201.Google Scholar
Oliver, G. J. H., Corfu, F. & Krogh, T. E. 1993. U–Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. Journal of the Geological Society, London 150, 355–69.CrossRefGoogle Scholar
Perchuk, L. L., Korchagina, M. A., Yapaskurt, V. O. & Bakun-Czubarow, N. 2005. Some High-Pressure Metamorphic Complexes in the West Sudetes, Poland: I. Petrography and Mineral Chemistry. Petrology 13 (5), 427–68.Google Scholar
Peytcheva, I., von Quadt, A., Georgiev, N., Ivanov, Zh., Heinrich, C. A. & Frank, M. 2008. Combining trace-element compositions, U–Pb geochronology and Hf isotopes in zircons to unravel complex calcalkaline magma chambers in the Upper Cretaceous Srednogorie zone (Bulgaria). Lithos 104, 405–27.CrossRefGoogle Scholar
Pilot, J., Werner, C.-D., Haubrich, F. & Baumann, N. 1998. Palaeozoic and proterozoic zircons from the Mid-Atlantic Ridge. Nature 393, 676–9.CrossRefGoogle Scholar
Pouba, Z., Paděra, K. & Fiala, J. 1985. Omphacite granulite from the NE marginal area of the Bohemian Massif (Rychleby Mts). Neues Jahrbuch für Mineralogie, Abhandlungen 151, 2952.Google Scholar
Presnyakov, S., Lepekhina, E., Belyatsky, B., Shuliatin, O., Antonov, A. & Sergeev, S. 2008. Accessory zircon from the modern oceanic crust. 33rd International Geological Congress Oslo, Abstract Volume, MPC01224P.Google Scholar
Pressler, R. E., Schneider, D. A., Petronis, M. S., Holm, D. K. & Geissman, J. W. 2007. Pervasive horizontal fabric and rapid vertical extrusion: Lateral overturning and margin sub-parallel flow of deep crustal migmatites, northeastern Bohemian Massif. Tectonophysics 443, 1936.CrossRefGoogle Scholar
Root, D. B., Hacker, B. R., Mattinson, J. M. & Wooden, J. L. 2004. Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahigh-pressure rocks: an ion microprobe and chemical abrasion study. Earth and Planetary Science Letters 228, 325–41.CrossRefGoogle Scholar
Rubatto, D. 2002. Zircon trace element geochemistry: distribution coefficients and the link between U–Pb ages and metamorphism. Chemical Geology 184, 123–38.CrossRefGoogle Scholar
Rubatto, D. & Hermann, J. 2003. Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochimica et Cosmochimica Acta 67, 2173–87.CrossRefGoogle Scholar
Schneider, D. A., Zahniser, S., Glascock, J., Gordon, S. M. & Manecki, M. 2006. Thermochronology of the West Sudetes (Bohemian Massif): rapid and repeated eduction in the eastern Variscides, Poland and Czech Republic. American Journal of Science 306, 846–73.CrossRefGoogle Scholar
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Smulikowski, K. 1967. Eclogites of the Śnieżnik Mountains in the Sudetes. Geologia Sudetica 3, 7180.Google Scholar
Smulikowski, K. & Smulikowski, W. 1985. On the porphyroblastic eclogites of the Śnieżnik Mountains in the Polish Sudetes. Chemical Geology 50, 201–22.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Steltenpohl, M. G., Cymerman, Z., Krogh, E. J. & Kunk, M. J. 1993. Exhumation of eclogitized continental basement during Variscan lithospheric delamination and gravitational collapse, Sudety Mountains, Poland. Geology 21, 1111–14.2.3.CO;2>CrossRefGoogle Scholar
Štípská, P., Schulmann, K. & Kröner, A. 2004. Vertical extrusion and middle crustal spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). Journal of Metamorphic Geology 22, 179–98.CrossRefGoogle Scholar
Sylvester, P. J. & Ghaderi, M. 1997. Trace element analysis of scheelite by excimer laser ablation inductively coupled plasma mass spectrometry (ELA-ICP-MS) using a synthetic glass standard. Chemical Geology 141, 4965.CrossRefGoogle Scholar
Turniak, K., Mazur, S. & Wysoczanski, R. 2000. SHRIMP zircon geochronology and geochemistry of the Orlica-Śnieżnik gneisses (Variscan belt of Central Europe) and their tectonic implications. Geodinamica Acta 13, 293312.CrossRefGoogle Scholar
Watson, E. B., Wark, D. & Thomas, J. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151, 413–33.CrossRefGoogle Scholar
Whitehouse, M. J. & Platt, J. P. 2003. Dating high-grade metamorphism: constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology 145, 6174.CrossRefGoogle Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.CrossRefGoogle Scholar
Williams, I. S. 1998. U–Th–Pb geochronology by ion microprobe. In Applications of microanalytical techniques to understanding mineralizing processes (eds McKibben, M. A., Shanks III, W. C. & Ridley, W. I.), pp. 1–35. Reviews in Economic Geology 7.Google Scholar
Żelaźniewicz, A., Mazur, S. & Szczepański, J. 2002. The Lądek-Śnieżnik Metamorphic Unit – recent state of knowledge. Geolines 14, 115–25.Google Scholar
Żelaźniewicz, A., Nowak, I., Larionov, A. N. & Presnyakov, S. 2006. Syntectonic lower Ordovician migmatite and post-tectonic Upper Viséan syenite in the western limb of the Orlica-Śnieżnik Dome, West Sudetes: U–Pb SHRIMP data from zircons. Geologia Sudetica 38, 6380.Google Scholar
Supplementary material: PDF

Brocker supplementary material

Appendix.pdf

Download Brocker supplementary material(PDF)
PDF 1.2 MB