Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T05:36:28.505Z Has data issue: false hasContentIssue false

Vertebrate microremains from the upper Silurian Winnica Formation of the Holy Cross Mountains, Poland

Published online by Cambridge University Press:  22 August 2017

OSKAR BREMER*
Affiliation:
Uppsala University, Department of Organismal Biology, Norbyvägen 18A, 752 36, Uppsala, Sweden
GRZEGORZ NIEDŹWIEDZKI
Affiliation:
Uppsala University, Department of Organismal Biology, Norbyvägen 18A, 752 36, Uppsala, Sweden
HENNING BLOM
Affiliation:
Uppsala University, Department of Organismal Biology, Norbyvägen 18A, 752 36, Uppsala, Sweden
MAREK DEC
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
WOJCIECH KOZŁOWSKI
Affiliation:
Institute of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warsaw, Poland
*
Author for correspondence: [email protected]

Abstract

Vertebrate microremains from the upper Silurian Winnica Formation in the Holy Cross Mountains, Poland are described from the Winnica and Rzepin sections. Both sites record the uppermost part of the Słupianka Member, but represent different depositional environments. The Winnica samples come from a low-energy environment, while the Rzepin sample was taken from a high-energy, oolitic facies. Both sites contain thelodonts Thelodus parvidens, Thelodus trilobatus, an anaspid cf. Liivilepis and a number of acanthodian scales of ‘nostolepid’, poracanthodid and ‘gomphonchid’ types. Notable differences between the sites are the addition of the osteostracan Tahulaspis cf. ordinata, the thelodont Paralogania ludlowiensis and acanthodian scales identified as Nostolepis gracilis in the Rzepin section. Placing the vertebrate faunas within the vertebrate biozonation established for the Silurian proved difficult. The suggested late Ludlow age for the Słupianka Member based on sequence stratigraphical and chemostratigraphical correlations cannot be definitely confirmed or refuted, but a late Ludfordian age seems the most plausible based on invertebrate and vertebrate faunas. The much lower abundance of poracanthodid acanthodians in the Rzepin sample supports the notion of Poracanthodes porosus Zone as a deep-water equivalent to a number of vertebrate biozones. The presence of P. ludlowiensis only in the oolitic sample confirms a long temporal range, but restricted environmental distribution for this taxon.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1839. Fishes of the old red sandstone. In The Silurian System, 1st Edition (ed. Murchisson, R. I.). London: John Murray, 768 pp.Google Scholar
Bassett, M. G., Kaljo, D. & Teller, L. 1989. The Baltic Region. In A Global Standard for the Silurian System (eds Holland, C. H. & Bassett, M. G.), pp. 158–70. National Museum of Wales, Geological Series 9.Google Scholar
Blom, H., Märss, T. & Miller, C. G. 2002. Silurian and earliest Devonian birkeniid anaspids from the Northern Hemisphere. Transactions of the Royal Society of Edinburgh: Earth Sciences 92, 263323.Google Scholar
Bodzioch, A., Kozłowski, W. & Popławska, A. 2003. A Cooksonia-type flora from the Upper Silurian of the Holy Cross Mountains, Poland. Acta Palaeontologica Polonica 48, 653–6.Google Scholar
Brazeau, M. D. 2012. A revision of the anatomy of the Early Devonian jawed vertebrate Ptomachanthus anglicus Miles. Palaeontology 55 (2), 355–67.Google Scholar
Brotzen, F. 1934. Erster Nachweis von Unterdevon in Ostseegebiet durch Konglomeratgeschiebe mit Fischresten. II. Teil (Paläontologie). Zeitschrift für Geschiebeforschung 10, 165.Google Scholar
Burrow, C. J. 2013. Reassessment of Ischnacanthus? scheii Spjeldnaes (Acanthodii, Ischnacanthiformes) from the latest Silurian or earliest Devonian of Ellesmere Island, arctic Canada 1. Canadian Journal of Earth Sciences 50 (9), 945–54.Google Scholar
Burrow, C. J., Davidson, R. G., den Blaauwen, J. L. & Newman, M. J. 2015. Revision of Climatius reticulatus Agassiz, 1844 (Acanthodii, Climatiidae), from the Lower Devonian of Scotland, based on new histological and morphological data. Journal of Verebrate Paleontology 35 (3), 15 pp.Google Scholar
Burrow, C. J., den Blaauwen, J., Newman, M. & Davidson, R. 2016. The diplacanthid fishes (Acanthodii, Diplacanthiformes, Diplacanthidae) from the Middle Devonian of Scotland. Palaeontologia Electronica 19 (1), 183.Google Scholar
Burrow, C. J., Newman, M. J., Davidson, R. G. & den Blaauwen, J. L. 2013. Redescription of Parexus recurvus, an Early Devonian acanthodian from the Midland Valley of Scotland. Alchering: An Australasian Journal of Palaeontology 37 (3), 392414, doi: 10.1080/03115518.2013.765656.Google Scholar
Burrow, C. J. & Rudkin, D. 2014. Oldest near-complete acanthodian: the first vertebrate from the Silurian Bertie Formation Konservat-Lagerstätte, Ontario. PLoS ONE 9 (8), e104171, doi:10.1371/journal.pone.0104171.Google Scholar
Burrow, C. J., Vergoossen, J. M. J., Turner, S., Uyeno, T. & Thorsteinsson, R. 1999. Microvertebrate assemblages from the Upper Silurian of Cornwallis Island, Arctic Canada. Canadian Journal of Earth Sciences 36 (3), 349–61.Google Scholar
Chevrinais, M., Sire, J.-Y. & Cloutier, R. 2017. From body scale ontogeny to species ontogeny: histological and morphological assessment of the Late Devonian acanthodian Triazeugacanthus affinis from Miguasha, Canada. PLoS One 12 (4), e0174655.Google Scholar
Czarnocki, J. 1957. Geologic map of the Holy Cross Mountains (without Quaternary deposits), 1:200,000. Wydawnictwa Geologiczne, Warsaw.Google Scholar
Eriksson, M. E., Nilsson, E. K. & Jeppsson, L. 2009. Vertebrate extinctions and reorganizations during the Late Silurian Lau Event. Geology 37, 739–42.Google Scholar
Filonowicz, P. 1968. Objaśnienia do szczegółowej mapy geologicznej Polski 1:50 000, Arkusz Nowa Słupia, 1–73. Wydawnictwa Geologiczne, Warszawa [in Polish].Google Scholar
Fredholm, D. 1988. Vertebrates in the Ludlovian Hemse Beds of Gotland, Sweden. Geologiska Föreningens i Stockholm Förhandlingar 110 (2), 157–79.Google Scholar
Fredholm, D. 1989. Silurian vertebrates of Gotland, Sweden. PhD thesis. Lund Publications in Geology 76, 147.Google Scholar
Gross, W. 1947. Die Agnathen und Acanthodier des obersilurische Beyrichienkalks. Palaeontographica A 96, 91158.Google Scholar
Gross, W. 1967. Über Thelodontier-Schuppen. Palaeontographica A 127, 167.Google Scholar
Gross, W. 1971. Downtonische und dittonische Acanthodier-Reste des Ostseegebietes. Palaeontographica A 136, 182.Google Scholar
Hoppe, K. H. 1931. Die Coelolepiden und Acanthodier des Obersilurs der Insel Oesel. Palaeontographica 76, 3594.Google Scholar
Jarochowska, E., Bremer, O., Heidlas, D., Pröpster, S., Vandenbroucke, T. & Munnecke, A. 2016. End-Wenlock terminal Mulde carbon isotope excursion in Gotland, Sweden: integration of stratigraphy and taphonomy for correlations across restricted facies and specialized faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 457, 304–22.Google Scholar
Jaworowski, K. 1971. Sedimentary structures of the Upper Silurian siltstones in the Polish Lowland. Acta Geologica Polonica 21, 519–71.Google Scholar
Jeppsson, L., Eriksson, M. E. & Calner, M. 2006. A latest Llandovery to latest Ludlow high-resolution biostratigraphy based on the Silurian of Gotland – a summary. Geologiska Föreningens i Stockholm Förhandlingar 128, 109–14.Google Scholar
Kaljo, D., Einasto, R., Martma, T., Märss, T., Nestor, V. & Viira, V. 2015. A bio-chemostratigraphical test of the synchroneity of biozones in the upper Silurian of Estonia and Latvia with some implications for practical stratigraphy. Estonian Journal of Earth Sciences 64 (4), 267–83.Google Scholar
Kaljo, D. & Martma, T. 2006. Application of carbon isotope stratigraphy to dating Baltic Silurian rocks. Geologiska Föreningens i Stockholm Förhandlingar 128, 161–8.Google Scholar
Karatajute-Talimaa, V. 1978. Silurian and Devonian Thelodonts of the USSR and Spitsbergen. Mokslas Publishers Vilnius, 334 pp [in Russian].Google Scholar
Karatajūte-Talimaa, V. & Brazauskas, A. 1994. Distribution of vertebrates in the Silurian of Lithuania. Geologija 17, 106–13.Google Scholar
Kozłowski, W. 2000. Stop 6: Winnica. In Joint Meeting of Europrobe (TESZ) and PACE Projects (ed. Belka, Z.), pp. 2830. Excursion Guidebook, The Holy Cross Mountains, Warszawa.Google Scholar
Kozłowski, W. 2003. Age, sedimentary environment and palaeogeographical position of the Upper Silurian oolitic beds in the Holy Cross Mountains (Central Poland). Acta Geologica Polonica 53, 341–57.Google Scholar
Kozłowski, W. 2008. Lithostratigraphy and regional significance of the Nowa Słupia Group (Upper Silurian) of the Łysogory Region (Holy Cross Mountains, central Poland). Acta Geologica Polonica 58, 4374.Google Scholar
Kozłowski, W. & Munnecke, A. 2010. Stable carbon isotope development and sea-level changes during the Late Ludlow (Silurian) of the Lysogóry region (Rzepin section, Holy Cross Mountains, Poland). Facies 56, 615–33.Google Scholar
Lehman, J-P. 1937. Les Poissons du Downtonien de la Scanie (Suède). Université de Paris, Rennes, Mémoire de la Faculté des Sciences de l’ Université de Paris 664, 98 pp.Google Scholar
Malec, J. 2000. Profil górnego syluru w Rzepinie. Posiedzenia Naukowe Państwowego Instytutu Geologicznego 56, 116–19.Google Scholar
Märss, T. 1982 a. Vertebrate zones in the East Baltic Silurian. In Ecostratigraphy of the East Baltic Silurian (eds Kaljo, D. and Klaasmann, E.), pp. 97106. Tallinn: Valgus.Google Scholar
Märss, T. 1982 b. Thelodus admirabilis n. sp. (agnatha) from the upper Silurian of the East Baltic. Eesti NSV 3, 112–6.Google Scholar
Märss, T. 1986. Silurian Vertebrates of Estonia and West Latvia. Fossilia Baltica 1, Academy of Sciences of the Estonian SSR Institute of Geology, 104 pp, 36 pls [in Russian].Google Scholar
Märss, T. 1989. Vertebrates. In A Global Standard for the Silurian System (eds Holland, C. H. & Bassett, M. G.), pp. 284–9. National Museum of Wales, Geological Series no. 9.Google Scholar
Märss, T. 1990. Vertebrates. In: Field Meeting, Estonia 1990: An Excursion Guidebook (eds Kaljo, D. and Nestor, H.), pp. 93–6. Tallinn: Estonian Academy of Sciences.Google Scholar
Märss, T. 1992. Vertebrate history in the Late Silurian. Proceedings of the Estonian Academy of Sciences, Geology 41 (4), 205–14.Google Scholar
Märss, T. 1997. Vertebrates of the Přidoli and Silurian-Devonian boundary beds in Europe. Modern Geology 21, 1742.Google Scholar
Märss, T. 2005. Thelodont Oeselia mosaica gen. et sp. nov. from the Wenlock and Ludlow of the East Baltic. Proceedings of the Estonian Academy of Sciences, Geology 54 (3), 181–90.Google Scholar
Märss, T. 2006 a. Exoskeletal ultrasculpture of early vertebrates. Journal of Vertebrate Paleontology 26 (2), 235–52.Google Scholar
Märss, T. 2006 b. Thelodonts (Agnatha) from the basal beds of the Kuressaare Stage, Ludlow, Upper Silurian of Estonia. Proceedings of the Estonian Academy of Sciences, Geology 55 (1), 4366.Google Scholar
Märss, T., Afanassieva, O. & Blom, H. 2014. Biodiversity of the Silurian osteostracans of the East Baltic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 105, 73148, doi:10.1017/S1755691014000218.Google Scholar
Märss, T. & Männik, P. 2013. Revision of Silurian vertebrate biozones and their correlation with the conodont succession. Estonian Journal of Earth Sciences 62 (4), 181204.Google Scholar
Märss, T. & Miller, G. 2004. Thelodonts and distribution of associated conodonts from the Llandovery-lowermost Lochkovian of the Welsh borderland. Palaeontology 47 (5), 1211–65.Google Scholar
Märss, T., Turner, S. & Karatajūte-Talima, V. 2007. Handbook of Paleoichthyology, Vol. 1B, “Agnatha” II. Thelodonti (ed. Schultze, H.-P.). München: Verlag Dr. Friedrich Pfeil, 143 pp.Google Scholar
Miller, G. & Märss, T. 1999. A conodont, thelodont and acanthodian fauna from the Lower Přídolí (Silurian) of Much Wenlock area, Shropshire. Palaeontology 42, 691784.Google Scholar
Pander, C. H. 1856. Monographie der fossilen Fische der silurischen Systems der Russisch-Baltischen Gouvernements. St. Petersburg: Kaiserlichen Akademie des Wissenschaften.Google Scholar
Paškevičius, J. 1997. The Geology of the Baltic Republics. Vilnius: Vilnius University & Geological Survey of Lithuania, 387 pp.Google Scholar
Perrier, V. & Siveter, D. J. 2013. Testing Silurian palaeogeography using ‘European’ ostracod faunas. In Early Palaeozoic Biogeography and Palaeogeography (eds Harper, D. A. T. & Servais, T.), pp. 355–65. Geological Society of London, Memoir no. 38. 355–64.Google Scholar
Rohon, V. 1893. Die obersilurischen Fische von Oesel. II. Theil. Mémoires Académie Impériale des Sciences de St Pétersbourg 41 (5), 1124.Google Scholar
Sansom, R. S. 2008. The origin and early evolution of the Osteostraci (Vertebrata): a phylogeny for the Thyestiida. Journal of Systematic Palaeontology 6, 317–32.Google Scholar
Sansom, R. S., Randle, E. & Donoghue, P. C. J. 2015. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history. Proceedings of the Royal Society of London B: Biological Sciences 282 (1800), doi:10.1098/rspb.2014.2245.Google Scholar
Schiøler, P. 1989. Non-toxic low-cost heavy liquid separation in the Geological Survey of Greenland. Rapport Grønlands Geologiske Undersøgelse 145, 11–3.Google Scholar
Tomczykowa, E. 1988. Silurian and lower Devonian biostratigraphy and palaeoecology in Poland. Biuletyn Instytutu Geologicznego 359, 2141.Google Scholar
Tomczykowa, E. 1991. Upper Silurian and Lower Devonian Trilobites of Poland. Prace Państwowego Instytutu Geologicznego 134, 162.Google Scholar
Tomczykowa, E. & Witwicka, E. 1974. Stratigraphic correlation of the Podlasian deposits on the basis of ostracodes and trilobites in the Peribaltic area of Poland (Upper Silurian). Biuletyn Państwowego Instytutu Geologicznego 276, 7886.Google Scholar
Trinajstic, K. 2001. Acanthodiean microremains from the Frasnian Gneudna Formation, Western Australia. Records of Western Australia 20, 187–98.Google Scholar
Turner, S. 1973. Siluro-Devonian thelodonts from the Welsh Borderland. Journal of the Geological Society, London 129, 557–84.Google Scholar
Turner, S. 1986. Thelodus macintoshi Stetson 1928, the largest known thelodont (Agnatha: Thelodont). Breviora 486, 118.Google Scholar
Turner, S. 1999. Early Silurian to Early Devonian thelodont assemblages and their possible ecological significance. In Paleocommunities: A Case Study from the Silurian and Lower Devonian. Final Report of IGCP 53, Project Ecostratigraphy (eds Boucout, A. & Lawson, J. D.), pp. 4278. Cambridge: Cambridge University Press.Google Scholar
Turner, S. 2000. New Llandovery to early Pridoli microvertebrates including Lower Silurian zone fossil, Loganellia avonia nov. sp., from Britain. In Palaeozoic Vertebrate Biochronology and Global Marine/Non-Marine Correlation (eds Blieck, A. & Turner, S.), pp. 91127. Final Report of IGCP 328 (1991–1996). Frankfurt: Courier Forschungsinstitut Senckenberg.Google Scholar
Valiukevičius, J. 1998. Acanthodians and zonal stratigraphy of Lower and Middle Devonian in East Baltic and Byelorussia. Palaeontographica Abteilung A 248, 153.Google Scholar
Valiukevičius, J. 2003 a. New Silurian Nostolepids (Acanthodii, Pisces) of Lithuania. Geologija 42, 5168.Google Scholar
Valiukevičius, J. 2003 b. New Late Silurian to Middle Devonian acanthodians of the Timan-Pechora region. Acta Geologica Polonica 53 (3), 209–45.Google Scholar
Valiukevičius, J. 2004 a. Silurian acanthodian succession of the Lužni-4 borehole (Latvia). Acta Universitas Latviensis 679, 120–47.Google Scholar
Valiukevičius, J. 2004 b. New Wenlock–Pridoli (Silurian) acanthodian fishes from Lithuania. Acta Palaeontologica Polonica 49 (1), 147–60.Google Scholar
Valiukevičius, J. 2005. Silurian acanthodian biostratigraphy of Lithuania. Geodiversitas 27 (3), 349–80.Google Scholar
Valiukevičius, J. 2006. Event pattern in the development of Siluro-Devonian acanthodians of Lithuania. Neues Jahrbuch für Geologie und Paläontologie-Monatshefte 6, 321–43.Google Scholar
Valiukevičius, J. & Burrow, C. J. 2005. Diversity of tissues in acanthodians with Nostolepis-type histological structure. Acta Palaeontologica Polonica 50 (3), 635–49.Google Scholar
Vergoossen, J. M. J. 1997. Revision of poracanthodid acanthodians. In Palaeozoic Strata and Fossils of the Eurasian Arctic (eds Ivanov, A., Wilson, M. V. H. & Zhuravlev, A.), 44–6. Abstracts. State University of St Petersburg, Ichthyolith Issues, Special Publication 3.Google Scholar
Vergoossen, J. M. J. 1999 a. Late Silurian fish microfossils from Helvetesgraven, Skåne (Southern Sweden) (I). Geologie en Mijnbouw 78, 267–80.Google Scholar
Vergoossen, J. M. J. 1999 b. Siluro-Devonian microfossils of Acanthodii and Chondrichthyes (Pisces) from the Welsh Borderland/south Wales. Modern Geology 24, 2390.Google Scholar
Vergoossen, J. M. J. 1999 c. Late Silurian fish microfossils from an East Baltic-derived erratic from Oosterhaule, with a description of new acanthodian taxa. Geologie en Mijnbouw 78, 231–51.Google Scholar
Vergoossen, J. M. J. 2000. Acanthodian and chondrichthyan microremains in the Siluro-Devonian of the Welsh Bordeland, Great Britain, and their biostratigraphical potential. Welsh borderlands. In Palaeozoic Vertebrate Biochronology and Global Marine/Non-Marine Correlation (eds Blieck, A. & Turner, S.), pp. 175–99. Final Report of IGCP 328. Frankfurt: Courier Forschungsinstitut Senckenberg 223.Google Scholar
Vergoossen, J. M. J. 2002 a. Late Silurian fish microfossils from Ramsåsa, locality H, Scania, south Sweden, with some remarks on the body zonation scheme used in thelodont studies. Scripta Geologica 123, 4169.Google Scholar
Vergoossen, J. M. J. 2002 b. Late Silurian fish microfossils from Klinta and Rinnebäcks Bro (Scania, south Sweden), with remarks on the morphology of Nostolepis striata trunk scales. Scripta Geologica 123, 7192.Google Scholar
Vergoossen, J. M. J. 2002 c. Late Silurian fish microfossils from Ramsåsa (sites D and ‘south of church’), Skåne, south Sweden. Scripta Geologica 123, 93158.Google Scholar
Vergoossen, J. M. J. 2003. First record of fish microfossils from Ramsåsa, site C, Skåne, southern Sweden. Scripta Geologica 126, 178.Google Scholar
Vergoossen, J. M. J. 2004. Fish microfossils from Ramsåsa, site E, Scania, southern Sweden (mid Palaeozoic). Scripta Geologica 127, 170.Google Scholar
Vieth, J. 1980. Thelodontier-, acanthodier- und Elasmobranchier-Schuppen aus dem Unter-Devon der Kanadischen Arktis (Agnatha, Pisces). Göttinger Arbeiten zur Geologie und Paläontologie 23, 69.Google Scholar
Walliser, O. H. 1964. Conodonten des Silurs. Abhandlungen des Hessischen Landesamtes für Bodenforschung 41,1106.Google Scholar
Supplementary material: PDF

Bremer et al supplementary material

Figures S1-S2

Download Bremer et al supplementary material(PDF)
PDF 352.1 KB