Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T15:45:41.516Z Has data issue: false hasContentIssue false

U–Pb SHRIMP ages of detrital granulite-facies rutiles: further constraints on provenance of Jurassic sandstones on the Norwegian margin

Published online by Cambridge University Press:  24 November 2010

GUIDO MEINHOLD*
Affiliation:
CASP, University of Cambridge, West Building, 181a Huntingdon Road, Cambridge CB3 0DH, UK
ANDREW C. MORTON
Affiliation:
CASP, University of Cambridge, West Building, 181a Huntingdon Road, Cambridge CB3 0DH, UK HM Research Associates, 2 Clive Road, Balsall Common, West Midlands CV7 7DW, UK
C. MARK FANNING
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia
ANDREW G. WHITHAM
Affiliation:
CASP, University of Cambridge, West Building, 181a Huntingdon Road, Cambridge CB3 0DH, UK
*
Author for correspondence: [email protected]

Abstract

Electron microprobe analyses of 128 detrital rutile grains from two Jurassic sandstone samples (Hettangian and Bajocian–Bathonian in age) from hydrocarbon exploration wells on the Norwegian margin confirm that more than 85 % of the rutiles were derived from metapelitic rocks. Zr-in-rutile geothermometry confirms that about 83 % of the rutile was formed under high-grade metamorphism (>750 °C). Sixty-two rutile grains, including 60 of the identified high-temperature rutile population, were also analysed for U–Pb geochronology using SHRIMP. The 206Pb–238U rutile ages range from approximately 485–292 Ma, with a major cluster between 450 and 380 Ma. These data suggest that the detrital rutile was predominantly derived from a felsic source that experienced granulite-facies metamorphism about 450–380 Ma ago. This conclusion is consistent with derivation from high-grade Caledonian metasedimentary rocks, probably the Krummedal sequence in central East Greenland, as previously suggested by an earlier provenance study using conventional heavy mineral analysis, garnet geochemistry and detrital zircon age dating. The present study underscores the importance of rutile geochemistry and geochronology in quantitative single-mineral provenance analysis of clastic sedimentary rocks.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. M. & Campbell, I. H. 2007. Spot dating of detrital rutile by LA-Q-ICP-MS: a powerful provenance tool. GSA Denver Annual Meeting, 28–31 October 2007, Abstract, Paper no. 196–12.Google Scholar
Birch, W. D., Barron, L. M., Magee, C. & Sutherland, F. L. 2007. Gold- and diamond-bearing White Hills Gravel, St Arnaud district, Victoria: age and provenance based on U–Pb dating of zircon and rutile. Australian Journal of Earth Sciences 54, 609–28.CrossRefGoogle Scholar
Brekke, H., Dahlgren, S., Nyland, B. & Magnus, C. 1999. The prospectivity of the Vøring and Møre basins on the Norwegian Sea continental margin. In Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (eds Fleet, A. J. & Boldy, S. A. R.), pp. 261–74. Geological Society of London.Google Scholar
Cherniak, D. J. 2000. Pb diffusion in rutile. Contribution to Mineralogy and Petrology 139, 198207.CrossRefGoogle Scholar
Dalland, A., Worsley, D. & Ofstad, K. 1988. A lithostratigraphic scheme for the Mesozoic and Cenozoic succession offshore mid- and northern Norway. Bulletin of the Norwegian Petroleum Directorate 4, 165.Google Scholar
Fedo, C. M., Sircombe, K. N. & Rainbird, R. H. 2003. Detrital zircon analysis of the sedimentary record. In Zircon (eds Hanchar, J. M. & Hoskin, P. O.), pp. 277303. Reviews in Mineralogy and Geochemistry no. 53.CrossRefGoogle Scholar
Gilotti, J. A., Elvevold, S. 2002. Extensional exhumation of a high-pressure granulite terrane in Payer Land, Greenland Caledonides: structural, petrologic and geochronologic evidence from metapelites. Canadian Journal of Earth Sciences 39, 1169–87.CrossRefGoogle Scholar
Gilotti, J. A., Jones, K. A. & Elvevold, S. 2008. Caledonian metamorphic patterns in Greenland. In The Greenland Caledonides: Evolution of the northeast margin of Laurentia (eds Higgins, A. K., Gilotti, J. A. & Smith, M. P.), pp. 201–25. Geological Society of America, Memoir no. 202.CrossRefGoogle Scholar
Harrison, T. M., Trail, D., Schmitt, A. K. & Watson, E. B. 2007. Rutile 207Pb-206Pb ages in the Jack Hills quartzite, Western Australia. Geochimica et Cosmochimica Acta 71 (15, Supplement 1), A383.Google Scholar
Ireland, T. R., & Williams, I. S. 2003. Considerations in zircon geochronology by SIMS. In Zircon (eds Hanchar, J. M. & Hoskin, P. O.), pp. 215–41. Reviews in Mineralogy and Geochemistry no. 53.CrossRefGoogle Scholar
Kalsbeek, F., Thrane, K., Nutman, A. P. & Jepsen, H. F. 2000. Late Mesoproterozoic to early Neoproterozoic history of the East Greenland Caledonides: evidence for Grenvillian orogenesis? Journal of the Geological Society, London 157, 1215–25CrossRefGoogle Scholar
Ludwig, K. R. 2001. SQUID 1.00, A User's Manual. Berkeley Geochronology Center, Special Publication no. 2.Google Scholar
Ludwig, K. R. 2003. Isoplot/Ex 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publications no. 4.Google Scholar
Martinius, A. W., Ringrose, P. S., Brostrøm, C., Elfenbein, C., Næss, A. & Ringås, J. E. 2005. Reservoir challenges of heterolithic tidal sandstone reservoirs in the Halten Terrace, mid-Norway. Petroleum Geoscience 11, 316.CrossRefGoogle Scholar
McClelland, W. C. & Gilotti, J. A. 2003. Late-stage extensional exhumation of high-pressure granulites in the Greenland Caledonides. Geology 31, 259–62.2.0.CO;2>CrossRefGoogle Scholar
McKerrow, W. S., Mac Niocaill, C. & Dewey, J. F. 2000. The Caledonian Orogeny redefined. Journal of Geological Society, London 157, 1149–54.CrossRefGoogle Scholar
Meinhold, G. 2010. Rutile and its applications in earth sciences. Earth-Science Reviews 102, 128.CrossRefGoogle Scholar
Meinhold, G., Anders, B., Kostopoulos, D. & Reischmann, T. 2008. Rutile chemistry and thermometry as provenance indicator: an example from Chios Island, Greece. Sedimentary Geology 203, 98111.CrossRefGoogle Scholar
Mezger, K, Hanson, G. N. & Bohlen, S. R. 1989. High-precision U-Pb ages of metamorphic rutiles: application to the cooling history of high-grade terranes. Earth and Planetary Science Letters 96, 106–18.CrossRefGoogle Scholar
Mezger, K., Rawnsley, C. M., Bohlen, S. R. & Hanson, G. N. 1991. U-Pb garnet, sphene, monazite, and rutile ages: implications for the duration of high-grade metamorphism and cooling histories, Adirondack Mts., New York. Journal of Geology 99, 415–28.CrossRefGoogle Scholar
Möller, A., Mezger, K. & Schenk, V. 2000. U–Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high pressure granulites in Tanzania, East Africa. Precambrian Research 104, 123–46.CrossRefGoogle Scholar
Morton, A. & Chenery, S. 2009. Detrital rutile geochemistry and thermometry as guides to provenance of Jurassic–Paleocene sandstones of the Norwegian Sea. Journal of Sedimentary Research 79, 540–53.CrossRefGoogle Scholar
Morton, A. C. & Hallsworth, C. R., 1994. Identifying provenance specific features of detrital heavy mineral assemblages in sandstones. Sedimentary Geology 90, 241–56.CrossRefGoogle Scholar
Morton, A., Hallsworth, C., Strogen, D., Whitham, A. G. & Fanning, M. 2009. Evolution of provenance in the NE Atlantic rift: the Early–Middle Jurassic succession in the Heidrun Field, Halten Terrace, offshore Mid Norway. Marine and Petroleum Geology 26, 1100–17.CrossRefGoogle Scholar
Morton, A. C., Whitham, A. G. & Fanning, C. M. 2005. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology 182, 328.CrossRefGoogle Scholar
Scott, R. A. 2000. Mesozoic–Cenozoic evolution of East Greenland: implications of a reinterpreted continent–ocean boundary location. Polarforschung 68, 8391.Google Scholar
Sircombe, K. 1995. SHRIMP ion probe provenance studies of heavy detrital minerals in coastal sands and sedimentary rocks of east Australia. Abstracts, 3rd Australian Conference on Geochronology and Isotope Geoscience, Perth, WA, Curtin University of Technology, 32.Google Scholar
Sircombe, K. N. 2004. AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Computers & Geosciences 30, 2131.CrossRefGoogle Scholar
Strachan, R. A., Nutman, A. P. & Friderichsen, J. D. 1995. SHRIMP U–Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. Journal of the Geological Society, London 152, 779–84.CrossRefGoogle Scholar
Taylor, W. R. 2008. Rutile U-Pb dating in diamond exploration – application to detrital heavy mineral provenance studies and kimberlite age dating. 9th International Kimberlite Conference, Extended Abstract No. 9IKC-A-00373.Google Scholar
Tera, F. & Wasserburg, G. J. 1972. U–Th–Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth and Planetary Science Letters 17, 281304.CrossRefGoogle Scholar
Thrane, K. 2002. Relationships between Archaean and Palaeoproterozoic crystalline basement complexes in the southern part of the East Greenland Caledonides: an ion microprobe study. Precambrian Research 113, 1942.CrossRefGoogle Scholar
Tomkins, H. S., Powell, R. & Ellis, D. J. 2007. The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology 25, 703–13.CrossRefGoogle Scholar
Vry, J. K. & Baker, J. A. 2006. LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta 70, 1807–20.CrossRefGoogle Scholar
Watson, E. B., Wark, D. A. & Thomas, J. B. 2006. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151, 413–33.CrossRefGoogle Scholar
Williams, I. S. 1998. U-Th-Pb geochronology by ion microprobe. In Applications of microanalytical techniques to understanding mineralising processes (eds McKibben, M. A., Shanks, W. C. III & Ridley, W. I.), pp. 135. Society of Economic Geologists, Reviews in Economic Geology no. 7.Google Scholar
Zack, T., Moraes, R. & Kronz, A. 2004. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology 148, 471–88.CrossRefGoogle Scholar
Zack, T., von Eynatten, H. & Kronz, A. 2004. Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology 171, 3758.CrossRefGoogle Scholar
Supplementary material: File

Meinhold supplementary material

Table A1.doc

Download Meinhold supplementary material(File)
File 91.1 KB
Supplementary material: File

Meinhold supplementary material

Table A2.doc

Download Meinhold supplementary material(File)
File 98.8 KB
Supplementary material: File

Meinhold supplementary material

Table A3.doc

Download Meinhold supplementary material(File)
File 90.6 KB
Supplementary material: File

Meinhold supplementary material

Table A4.doc

Download Meinhold supplementary material(File)
File 99.3 KB