Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T20:15:51.445Z Has data issue: false hasContentIssue false

Uncommon preservation of dinosaur footprints in a tidal breccia: Eubrontes giganteus from the Early Jurassic Mongisty tracksite of Aveyron, southern France

Published online by Cambridge University Press:  01 February 2021

Jean-David Moreau*
Affiliation:
Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000Dijon, France
Jacques Sciau
Affiliation:
Association Paléontologique des Causses, 643, avenue Kennedy, 12100Millau, France
Georges Gand
Affiliation:
Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000Dijon, France
Emmanuel Fara
Affiliation:
Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000Dijon, France
*
Author for correspondence: Jean-David Moreau, Email: [email protected]

Abstract

A recent excavation yielded 118 large tridactyl footprints in the Lower Jurassic Dolomitic Formation of the Causses Basin, at Mongisty in southern France. Most of the tracks are ascribed to Eubrontes giganteus Hitchcock, 1845. They are preserved on a surface of 53 m2 and form parallel rows with a preferential orientation towards the north. Such an abundance and density of E. giganteus is observed for the first time in the Early Jurassic from the Causses Basin. Sedimentological and ichnotaphonomical analyses show that the footprints were made at different time intervals, thus excluding the passage of a large group. In contrast to all other tracksites from the Dolomitic Formation, where tracks are preserved in fine-grained sediments corresponding to low-energy depositional palaeoenvironments, the tracks from Mongisty are preserved in coarse-grained sediment which is a matrix- to clast-supported breccia. Clasts consist of angular to sub-rounded, millimetric to centimetric-scale (up to 2 cm), poorly sorted, randomly oriented, homogeneous dolostone intraclasts floating in a dolomudstone matrix. Sedimentological analysis shows that the depositional environments of Mongisty varied from subtidal to intertidal/supratidal settings in a large and protected flat marsh. The lithology of the track-bearing surfaces indicates that the mudflat of the Causses Basin was sporadically affected by large mud flows that reworked and redeposited mudstone intraclasts coming from the erosion of upstream, dry and partially lithified mud beds. Throughout the world, this type of preservation of dinosaur tracks in tidal matrix- to clast-supported breccias remains rare.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcalá, L, Pérez-Lorente, F, Luque, L, Cobos, A, Roya-Torres, R and Mampel, L (2014) Preservation of dinosaur footprints in shallow intertidal deposits of the Jurassic-Cretaceous transition in the Iberian Range (Teruel, Spain). Ichnos 21, 1931.CrossRefGoogle Scholar
Alexander, R McN (1976) Estimates of speeds of dinosaurs. Nature 261, 129–30.CrossRefGoogle Scholar
Allen, JRL (1997) Subfossil mammalian tracks (Flandrian) in the Severn Estuary, S.W. Britain: mechanics of formation, preservation and distribution. Philosophical Transactions of the Royal Society B, Biological Sciences 352, 481518.CrossRefGoogle Scholar
Alsharhan, AS and Kendall, CSC (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth-Science Reviews 61, 191243.CrossRefGoogle Scholar
Arrondeau, J-P (1982) Etude sédimentologique du Lias inférieur carbonaté du seuil caussenard et de ses abords (Languedoc). Thesis, University of Nantes, Nantes, France. Published thesis.Google Scholar
Arrondeau, J-P, Bodeur, Y, Cussey, R, Fajerwerg, R and Yapaudjian, L (1985) Indices de pédogenèse et de karstification dans le Lias calcaréo-dolomitique du Causse du Larzac (Languedoc, France). Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 9, 373403.Google Scholar
Baird, D (1957) Triassic reptile footprint faunules from Milford, New Jersey. Harvard College Museum of Comparative Zoology Bulletin 117, 449520.Google Scholar
Briand, BG, Couturié, J-P, Geffroy, J and Gèze, B (1979) Notice explicative, carte géologique au 1/50.000 de la France, feuille de Mende (862). Orléans: Bureau de Recherches Géologiques et Minières, 52 pp.Google Scholar
Brouder, P, Gèze, B, Macquar, JC and Paloc, H (1977). Notice explicative, carte géologique au 1/50.000 de la France, feuille de Meyrueis (910). Orléans: Bureau de Recherches Géologiques et Minières, 29 pp.Google Scholar
Candia Halupczok, DJ, Sánchez, ML, Veiga, GD and Apesteguía, S (2018) Dinosaur tracks in the Kokorkom desert, Candeleros formation (Cenomanian, Upper Cretaceous), Patagonia Argentina: implications for deformation structures in dune fields. Cretaceous Research 83, 194206.CrossRefGoogle Scholar
Carrano, MT and Sampson, SD (2004) A review of coelophysoids (Dinosauria: Theropoda) from the Early Jurassic of Europe, with comments on the late history of the Coelophysoidea. Neues Jahrbuch für Geologie und Paläontologie Monatshefte 9, 537–58.CrossRefGoogle Scholar
Courel, L and Demathieu, G (2000) Une nouvelle espèce Coelurosaurichnus grancieri du Trias de l’Ardèche, France. Geodiversitas 22, 3546.Google Scholar
Cuny, G and Galton, PM (1993). Revision of the Airel theropod dinosaur from the Triassic-Jurassic boundary (Normandy, France). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 187, 261–88.Google Scholar
Dalla Vecchia, FM, Tarlao, A, Tentor, M, Tunis, G and Venturini, S (2000) First record of Hauterivian dinosaur footprints in southern Istria (Croatia). Zbornik Radova 2, 143–9.Google Scholar
Dalman, SG (2012) New data on small theropod footprints from the Early Jurassic (Hettangian) Hartford Basin of Massachusetts, United States. Bulletin of the Peabody Museum of Natural History 53, 333–53.CrossRefGoogle Scholar
Dal Sasso, C, Maganuco, S and Cau, A (2018) The oldest ceratosaurian (Dinosauria: Theropoda), from the Lower Jurassic of Italy, sheds light on the evolution of the three-fingered hand of birds. PeerJ 6, e5976.CrossRefGoogle Scholar
Delsate, D and Ezcurra, MD (2014) The first Early Jurassic (late Hettangian) theropod dinosaur remains from the Grand Duchy of Luxembourg. Geologica Belgica 17, 175–81.Google Scholar
Demathieu, G (1990). Problem in discrimination of tridactyl dinosaur footprints, exemplified by the Hettangian trackways, the Causses, France. Ichnos 1, 97110.CrossRefGoogle Scholar
Demathieu, G (1993) Empreintes de pas de dinosaures dans les Causses (France). Zubía 5, 229–52.Google Scholar
Demathieu, G (2003) Comparaison des ichnopopulations des Grands Causses (Sud de la France) et du Veillon (Vendée). Le Naturaliste Vendéen 3, 5960.Google Scholar
Demathieu, G and Sciau, J (1992) Des pistes de dinosaures et de crocodiliens dans les dolomies de l’Hettangien du Causse du Larzac. Comptes Rendus de l’Académie des Sciences de Paris 315, 1561–6.Google Scholar
Demathieu, G and Sciau, J (1999) De grandes empreintes de pas de dinosaures dans l’Hettangien de Peyre (Aveyron, France). Geobios 32, 609–16.CrossRefGoogle Scholar
Demathieu, G, Gand, G, Sciau, J and Freytet, P (2002) Les traces de pas de dinosaures et autres archosaures du Lias inférieur des Grands Causses, Sud de la France. Palaeovertebrata 31, 1143.CrossRefGoogle Scholar
Ellenberger, P (1988) La découverte des pistes de dinosauriens de Camprieu. Causses et Cévennes 7, 139–40.Google Scholar
Ezcurra, MD and Cuny, G (2007) The coelophysoid Lophostropheus airelensis, gen. nov.: a review of the systematics of ‘Liliensternus’ airelensis from the Triassic–Jurassic outcrops of Normandy (France). Journal of Vertebrate Paleontology 27, 7386.CrossRefGoogle Scholar
Falkingham, PL, Bates, KT, Margetts, L and Manning, PL (2011) The Goldilocks effect: preservation bias in vertebrate track assemblages. Journal of the Royal Society Interface 8, 1142–54.CrossRefGoogle ScholarPubMed
Gand, G and Demathieu, G (2005) Les pistes dinosauroïdes du Trias moyen français: interprétation et réévaluation de la nomenclature. Geobios 38, 725–49.CrossRefGoogle Scholar
Gand, G, Demathieu, GR and Montenat, C (2007) Les traces de pas d’amphibiens, de dinosaures et autres reptiles du Mésozoïque français: inventaire et interpretations. Palaeovertebrata 35, 1149.CrossRefGoogle Scholar
Gand, G, Fara, E, Durlet, C, Caravaca, G, Moreau, J-D, Baret, L, André, D, Lefillatre, R, Passet, A, Wiénin, M and Gély, J-P (2018) Les pistes d’archosauriens: Kayentapus ubacensis nov. isp. (théropodes) et crocodylomorphes du Bathonien des Grands-Causses (France). Conséquences paléo-biologiques, environnementales et géographiques. Annales de Paléontologie 104, 183216.CrossRefGoogle Scholar
Gatesy, SM and Falkingham, PL (2017) Neither bones nor feet: track morphological variation and ‘preservation quality’. Journal of Vertebrate Paleontology 37, e1314298.CrossRefGoogle Scholar
Getty, PR, Aucoin, C, Fox, N, Judge, A, Hardy, L and Bush, AM (2017) Perennial lakes as an environmental control on theropod movement in the Jurassic of the Hartford Basin. Geosciences 7, 13.CrossRefGoogle Scholar
Getty, PR and Fox, N (2015) An isolated Eubrontes giganteus trackway from the Gary Gaulin dinosaur track site (Early Jurassic, East Berlin Formation). Northeastern Geoscience 33, 1621.Google Scholar
Getty, PR, Hardy, L and Bush, AM (2015) Was the Eubrontes track maker gregarious? Testing the herding hypothesis at Powder Hill Dinosaur Park, Middlefield, Connecticut. Bulletin of the Peabody Museum of Natural History 56, 95106.CrossRefGoogle Scholar
Gèze, B, Pellet, J, Paloc, H, Bambier, A, Roux, J and Senaud, G (1980). Notice explicative, carte géologique au 1/50.000 de la France, feuille de Florac (886). Orléans: Bureau de Recherches Géologiques et Minières, 52 pp.Google Scholar
Hamon, Y (2004) Morphologie, évolution latérale et signification géodynamique des discontinuités sédimentaires: exemple de la marge Ouest du Bassin du Sud-Est (France). Thesis, University of Montpellier II, Montpellier, France. Published thesis.Google Scholar
Hitchcock, E (1845) An attempt to name, classify, and describe the animals that made the fossil footmarks of New England. In Proceedings of the Sixth Annual Meeting of the American Association of Geologists and Naturalists, New Haven, Connecticut, pp. 23–5.Google Scholar
Hitchcock, E (1848) An attempt to discriminate and describe the animals that made the fossil footmarks of the United States, and especially of New England. Memoirs of the American Academy of Arts and Sciences 3, 129256.CrossRefGoogle Scholar
Jahnert, RJ and Collins, LB (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Marine Geology 303, 115–36.CrossRefGoogle Scholar
Kendall, CGStC and Warren, J (1987) A review of the origin and setting of tepees and their associated fabrics. Sedimentology 34, 1007–28.CrossRefGoogle Scholar
Lagnaoui, A, Klein, H, Voigt, S, Hminna, A, Saber, H, Schneider, JW and Werneburg, R (2012) Late Triassic tetrapod-dominated ichnoassemblages from the Argana Basin (Western High Atlas, Morocco). Ichnos 19, 238–53.CrossRefGoogle Scholar
Lange-Badré, B and Lafon, JP (2000) Découverte de pistes de dinosaures théropodes dans le Lias inférieur des environs de Figeac (Lot). Comptes Rendus de l’Académie des Sciences de Paris 330, 379–84.Google Scholar
Laporte, LF and Behrensmeyer, AK (1980) Tracks and substrate reworking by terrestrial vertebrates in Quaternary sediments of Kenya. Journal of Sedimentary Research 50, 1337–46.Google Scholar
Lapparent, AF (de) and Montenat, C (1967) Les empreintes de pas de reptiles de l’Infralias du Veillon (Vendée). Mémoires de la Société Géologique de France 46, 143.Google Scholar
Larsonneur, C and Lapparent, AF (de) (1966) Un dinosaurien carnivore, Halticosaurus, dans le Rhétien d’Airel (Manche). Bulletin de la Société Linnéenne de Normandie 10, 108–16.Google Scholar
Leonardi, G (1987) Glossary and manual of tetrapod footprint palaeoichnology. Brasília: Publicacão do Departemento Nacional da Produção Mineral Brasil, 75 pp.Google Scholar
Lockley, MG, Gierliński, G and Lucas, SG (2011) Kayentapus revised: notes on the type material and the importance of this theropod footprint ichnogenus. New Mexico Museum of Natural History and Science Bulletin 53, 330–6.Google Scholar
Loope, DB (2006) Dry-season tracks in dinosaur-triggered grainflows. Palaios 21, 132–42.CrossRefGoogle Scholar
Lucas, SG, Klein, H, Lockley, MG, Spielmann, JA, Gierliński, GD, Hunt, AP and Tanner, LH (2006a) Triassic-Jurassic stratigraphic distribution of the theropod footprint ichnogenus Eubrontes . New Mexico Museum of Natural History and Science Bulletin 37, 8693.Google Scholar
Lucas, SG, Lockley, MG, Hunt, AP, Milner, AR and Tanner, LH (2006b) Tetrapod footprint biostratigraphy of the Triassic–Jurassic transition in the American southwest. New Mexico Museum of Natural History and Science Bulletin 37, 105–8.Google Scholar
Mallison, H and Wings, O (2014) Photogrammetry in paleontology – a practical guide. Journal of Paleontological Techniques 12, 131.Google Scholar
Marchetti, L, Belvedere, M, Voigt, S, Klein, H, Castanera, D, Díaz-Martínez, I, Marty, D, Xing, L, Feola, S, Melchor, RN and Farlow, JO (2019) Defining the morphological quality of fossil footprints. Problems and principles of preservation in tetrapod ichnology with examples from the Palaeozoic to the present. Earth-Science Reviews 193, 109–45.CrossRefGoogle Scholar
Marty, D (2008) Sedimentology, taphonomy, and ichnology of Late Jurassic dinosaur tracks from the Jura carbonate platform (Chevenez-Combe Ronde tracksite, NW Switzerland): insights into the tidal-flat palaeoenvironment and dinosaur diversity, locomotion, and palaeoecology. Geofocus 21, 1278.Google Scholar
Marty, D, Strasser, A and Meyer, CA (2009) Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: implications for the study of fossil footprints. Ichnos 16, 127–42.CrossRefGoogle Scholar
Matthews, N, Noble, T, Breithaupt, BH, Falkingham, PL, Marty, D and Richter, A (2016) Close-range photogrammetry for 3-D ichnology: the basics of photogrammetric ichnology. In Dinosaur Tracks: The Next Steps (eds Falkingham, PL, Marty, D and Richter, A), pp. 2955. Bloomington and Indianapolis: Indiana University Press.Google Scholar
Matysik, M (2016) Facies types and depositional environments of a morphologically diverse carbonate platform: a case study from the Muschelkalk (Middle Triassic) of Upper Silesia, southern Poland. Annales Societatis Geologorum Poloniae 86, 119–64.Google Scholar
Mennessier, G, Collomb, P, Astruc, J-G, Roche, J, Bambier, A and Galharague, J (1984) Notice explicative, carte géologique au 1/50.000 de la France, feuille de Millau (935). Orléans: Bureau de Recherches Géologiques et Minières, 32 pp.Google Scholar
Mennessier, G, Collomb, P, Astruc, J-G, Roche, J, Vautrelle, C and Galharague, J (1986) Notice explicative, carte géologique au 1/50.000 de la France, feuille de Saint Beauzély (909). Orléans: Bureau de Recherches Géologiques et Minières, 43 pp.Google Scholar
Milàn, J (2003) Experimental ichnology: experiments with track and undertrack formation using emu tracks in sediment of different consistencies, with comparisons to fossil dinosaur tracks. Thesis, University of Copenhagen, Copenhagen, Denmark. Published thesis.Google Scholar
Milàn, J and Falkingham, PL (2016) Experimental and comparative ichnology. In Dinosaur Tracks: The Next Steps (eds Falkingham, PL, Marty, D and Richter, A), pp. 1427. Bloomington and Indianapolis: Indiana University Press.Google Scholar
Milàn, J and Loope, DB (2007) Preservation and erosion of theropod tracks in eolian deposits: examples from the Middle Jurassic Entrada Sandstone, Utah, U.S.A. Journal of Geology 115, 375–86.CrossRefGoogle Scholar
Moreau, J-D (2011) Nouvelles découvertes d’empreintes de dinosaures en Lozère. Analyse biométrique des traces et synthèse paléoenvironnementale de l’Hettangien. Mende: Association Paléontologique des Hauts Plateaux du Languedoc, 34 pp.Google Scholar
Moreau, J-D, Baret, L, Trincal, V and André, D (2012a) Empreintes dinosauroïdes de l’Hettangien de Gatuzières (Lozère, France). In Ichnologie dinosaurienne du Jurassique de Meyrueis, pp. 511. Mende: Association Paléontologique des Hauts Plateaux du Languedoc.Google Scholar
Moreau, J-D, Fara, E, Néraudeau, D and Gand, G (2019a) New Hettangian tracks from the Causses Basin (Lozère, southern France) complement the poor fossil record of earliest Jurassic crocodylomorph in Europe. Historical Biology 31, 341 552.CrossRefGoogle Scholar
Moreau, J-D, Gand, G, Fara, E and Michelin, A (2012b) Biometric and morphometric approaches on Lower Hettangian dinosaur footprints from the Rodez Strait (Aveyron, France). Comptes Rendus Palevol 11, 231–9.CrossRefGoogle Scholar
Moreau, J-D, Philippe, M and Thévenard, F (2019b) Early Jurassic flora from the city of Mende (Lozère): synthesis of the historical sites, new sedimentological, palaeontological and palaeoenvironmental data. Comptes Rendus Palevol 18, 159–77.CrossRefGoogle Scholar
Moreau, J-D, Trincal, V, André, D, Baret, L, Jacquet, A and Wienin, M. (2018) Underground dinosaur tracksite inside a karst of southern France: early Jurassic tridactyl traces from the Dolomitic Formation of the Malaval Cave (Lozère). International Journal of Speleology 47, 2942.CrossRefGoogle Scholar
Moreau, J-D, Trincal, V, Gand, G, Néraudeau, D, Bessière, G and Bourel, B (2014) Two new dinosaur tracksites from the Hettangian Dolomitic Formation of Lozère, Languedoc- Roussillon, France. Annales de Paléontologie 100, 361–9.CrossRefGoogle Scholar
Olsen, PE, Smith, JH and McDonald, NG (1998) Type material of the type species of the classic theropod footprint genera Eubrontes, Anchisauripus and Grallator (Early Jurassic, Hartford and Deerfield basins, Connecticut and Massachusetts, U.S.A.). Journal of Vertebrate Paleontology 18, 586601.CrossRefGoogle Scholar
Ostrom, JH (1972) Were some dinosaurs gregarious? Palaeogeography, Palaeoclimatology, Palaeoecology 11, 287301.CrossRefGoogle Scholar
Roquefort, C (1934) Contribution à l’étude de l’Infra-Lias et du Lias inférieur des Causses cévenols. Bulletin de la Société Géologique de France 5, 573–94.Google Scholar
Sciau, J (1998) Dinosaures et reptiles marins des Causses. Millau: Association des Amis du Musée de Millau, 56 pp.Google Scholar
Sciau, J (2003) Dans les pas des dinosaures des Causses. Inventaire des sites à empreintes. Millau: Association des Amis du Musée de Millau, 107 pp.Google Scholar
Sciau, J (2019) Quelques sites à empreintes de pas de dinosaures connus ou nouveaux. Millau: Association Paléontologique des Causses, 57 pp.Google Scholar
Sciscio, L, Bordy, EM, Abrahams, M, Knoll, F and McPhee, BW (2017) The first megatheropod tracks from the Lower Jurassic upper Elliot Formation, Karoo Basin, Lesotho. PLOS ONE, 12, e0185941.CrossRefGoogle ScholarPubMed
Smith, ND, Makovicky, PJ, Hammer, WR and Currie, PJ (2007) Osteology of Cryolophosaurus ellioti (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. Zoological Journal of the Linnean Society 151, 377421.CrossRefGoogle Scholar
Szewczyk, L, Vennin, E, Moreau, J-D, Gand, G, Verolet, M, Klee, N and Fara, E (2020) Tracking dinosaurs in coarse-grained sediments from the Upper Triassic of Ardèche (southeastern France). Palaios.CrossRefGoogle Scholar
Thévenard, F (1993) Les coniférales du Jurassique inférieur du gisement de Chaldecoste, bassin des Causses (Lozère, France). Review of Palaeobotany and Palynology 78, 145–66.CrossRefGoogle Scholar
Thulborn, T. (1990) Dinosaur Tracks. London: Chapman & Hall, 410 pp.CrossRefGoogle Scholar
Tucker, M and Burchette, T (1977) Triassic dinosaur footprints from south Wales: their context and preservation. Palaeogeography, Palaeoclimatology, Palaeoecology 22, 195208.CrossRefGoogle Scholar
Wagensommer, A, Latiano, M, Mocke, HB and D’Orazi, P (2016) Dinosaur diversity in an Early Jurassic African desert: the significance of the Etjo Sandstone ichnofauna at the Otjihaenamaparero locality (Namibia). Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 281, 155–82.CrossRefGoogle Scholar
Weems, RE (2003) Plateosaurus foot structure suggests a single trackmaker for Eubrontes and Gigandipus footprints. In The Great Rift Valleys of Pangea in Eastern North America (eds Letourneau, PM and Olsen, PE), pp. 293313. New York: Columbia University Press.Google Scholar
Weems, RE (2019) Evidence for bipedal Prosauropods as the likely Eubrontes track-makers. Ichnos 26, 187215.CrossRefGoogle Scholar
Weishampel, DB, Dodson, P and Osmolska, H (2004) The Dinosauria. Berkeley: University of California Press, 862 pp.CrossRefGoogle Scholar
Xing, L, Bell, PR, Rothschild, BM, Ran, H, Zhang, J, Dong, Z, Zhang, W and Currie, PJ (2013) Tooth loss and alveolar remodeling in Sinosaurus triassicus (Dinosauria: Theropoda) from the Lower Jurassic strata of the Lufeng Basin, China. Chinese Science Bulletin 58, 1931–5.CrossRefGoogle Scholar
Xing, LD, Peng, GZ, Ye, Y, Lockley, MG, McCrea, RT, Currie, PJ, Zhang, JP and Burns, ME (2014) Large theropod trackway from the Lower Jurassic Zhenzhuchong Formation of Weiyuan County, Sichuan Province, China: review, new observations and special preservation. Palaeoworld 23, 285–93.CrossRefGoogle Scholar