Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T01:41:31.007Z Has data issue: false hasContentIssue false

Travertine deposits from along the South Tibetan Fault System near Nyalam, Tibet

Published online by Cambridge University Press:  09 September 2008

R. ZENTMYER
Affiliation:
Department of Geological Sciences, Queens University, Kingston, ON K7L 3N6, Canada
P. M. MYROW*
Affiliation:
Department of Geology, Colorado College, Colorado Springs, CO 80903, USA
D. L. NEWELL
Affiliation:
Department of Earth and Planetary Sciences, MSCO3-2040, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
*
Author for correspondence: [email protected]

Abstract

A newly investigated travertine deposit in southern Tibet provides a window into Holocene hydrological, geomorphic and climatic processes near the boundary of the Tibetan Plateau and High Himalaya. Travertine, deposited as a result of the degassing of CO2-rich groundwater as it emerges on the Earth's surface, is in many cases formed along the trace of major crustal-scale faults in primarily extensional tectonic regimes. A travertine platform measuring roughly 1 km by 0.5 km exists near the town of Nyalam in southern Tibet along a major Himalayan down-to-the-N normal fault, the South Tibetan Fault System. A wide variety of travertine depositional textures and features are recorded in the platform on a series of terraces. Active travertine deposition was observed from spring mounds and seeps along the base of the platform at the modern river level. Palaeotemperatures of spring water, calculated from δ18O of the travertine, range from 9 to 25 °C, which closely matches the temperatures recorded from modern springs in the area. A complex geomorphological landscape records interaction between growing alluvial fans, travertine accumulation, and a rapidly down-cutting river with associated fluvial terraces. River incision was contemporaneous with travertine deposition, as indicated by cemented fluvial river gravel layers interbedded with travertine. High 87Sr/86Sr ratios in the travertine (mean of 0.7168) indicate subsurface fluid interaction with radiogenic crystalline rocks of the underlying Greater Himalaya. Uranium-series ages of the travertine platform range from 5400 a (±950 a) to 11600 a (±1000 a), and indicate a younging progression from higher terraces near the valley wall to lower terraces at present-day river level. Travertine that overlies a river gravel terrace 18 m above river level formed at 11600 a. This date yields a local incision rate of 1.6 mm a−1, consistent with estimated fluvial incision rates in the High Himalaya. The range of our U-series ages coincides with an interval of higher precipitation associated with greater intensity of the Indian monsoon, which led to elevated spring discharge and carbonate precipitation in this part of the High Himalayas.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current affiliation: Hydrogeology, Geochemistry and Geology Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

References

Bargar, K. E. 1978. Geology and thermal history of Mammoth Hot Springs, Yellowstone National Park, Wyoming. U.S. Geological Survey Bulletin, no. 1444, 1–33.Google Scholar
Barnes, I., Irwin, W. P. & White, D. E. 1978. Global distribution of carbon dioxide discharges, and major zones of seismicity. U.S. Geological Survey: Water Resources Investigations 78–39.Google Scholar
Bird, P. 1991. Lateral extrusion of lower crust from under high topography, in the isostatic limit. Journal of Geophysical Research, B, Solid Earth and Planets 96, 10275–86.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R. C. & Strecker, M. R. 2005. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 33, 149–52.CrossRefGoogle Scholar
Burchfiel, B. C., Zhiliang, C., Hodges, K., Yuping, L., Royden, L. H., Changrong, D. & Jiene, X. 1992. The South Tibetan detachment system, Himalayan Orogen: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Special Paper, Geological Society of America 269, 415.Google Scholar
Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F. & Otto, J. B. 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516–19.2.0.CO;2>CrossRefGoogle Scholar
Chafetz, H. S. & Folk, R. L. 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology 54, 289316.Google Scholar
Chafetz, H. S. & Guidry, S. A. 2003, Deposition and diagenesis of Mammoth Hot Springs travertine, Yellowstone National Park, Wyoming, U.S.A. Canadian Journal of Earth Science 40, 1515–29.CrossRefGoogle Scholar
Chen, J., Zhang, D. D., Wang, S., Tangfu, X. & Ronggui, H. 2004. Factors controlling tufa deposition in natural waters at waterfall sites. Sedimentary Geology 166, 353–66.CrossRefGoogle Scholar
Coleman, M. E. 1996. Orogen-parallel and orogen-perpendicular extension in the central Nepalese Himalayas. Geological Society of America Bulletin 108, 15941607.2.3.CO;2>CrossRefGoogle Scholar
Crossey, L. J., Fischer, T. P., Patchett, P. J., Karlstrom, K. E., Hilton, D. R., Newell, D. L., Huntoon, P., Reynolds, A. C. & de Leeuw, G. A. M. 2006. Dissected hydrologic system at the Grand Canyon; interaction between deeply derived fluids and plateau aquifer waters in modern springs and travertine. Geology 34, 25–8.CrossRefGoogle Scholar
Elderfield, H. 1986. Strontium isotope stratigraphy. Paleogeography, Paleoclimatology, Paleoecology 57, 7190.CrossRefGoogle Scholar
Enzel, Y., Ely, L. L., Mishra, S., Ramesh, R., Amit, R., Lazar, B., Rajaguru, S. N., Baker, V. R. & Sandler, A. 1999. High-Resolution Holocene Environmental Changes in the Thar Desert, Northwestern India. Science 284, 125–8.CrossRefGoogle ScholarPubMed
Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. 1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin 64, 1315–26.CrossRefGoogle Scholar
Faure, G. & Powell, J. L. 1972. Strontium Isotope Geology. Berlin–Heidelberg: Springer-Verlag, 188 pp.CrossRefGoogle Scholar
Ford, D. 2003. Speleothems. Encyclopedia of sediments and sedimentary rocks (ed. Middleton, G. V.), pp. 678–81. Kluwer Academic Publishers.Google Scholar
Ford, T. D. & Pedley, H. M. 1996. A review of tufa and travertine deposits of the world. Earth Science Reviews 41, 117–75.CrossRefGoogle Scholar
Fouke, B. W., Farmer, J. D., Des Marais, D. J., Pratt, L., Sturchio, N. C., Burns, P. C. & Discipulo, M. K. 2000. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs Yellowstone National Park, U.S.A.). Journal of Sedimentary Research 70, 565–85.CrossRefGoogle ScholarPubMed
Gajurel, A. P., France-Lanord, C., Huyghe, P., Guilmette, C. & Gurung, D. 2006. C and O isotope compositions of modern fresh-water mollusk shells and river waters from the Himalaya and Ganga plain. Chemical Geology 233, 156–83.CrossRefGoogle Scholar
Goff, F. 1987. Travertine deposits of Soda Dam, New Mexico, and their implications for the age and evolution of the Valles caldera hydrothermal system. Geological Society of America Bulletin 99, 292302.2.0.CO;2>CrossRefGoogle Scholar
Guo, L. & Riding, R. 1998. Hot-spring travertine facies and sequences, Late Pleistocene, Rapolano Terme, Italy. Sedimentology 45, 163–80.CrossRefGoogle Scholar
Hancock, P. L., Chalmers, R. M. L., Altunel, E. & Cakir, Z. 1999. Travitonics: using travertine in active fault studies. Journal of Structural Geology 21, 903–16.CrossRefGoogle Scholar
Hodges, K. V. 2000. Tectonics of the Himalaya and southern Tibet from two perspectives. Geological Society of America Bulletin 112, 324–50.2.0.CO;2>CrossRefGoogle Scholar
Hoke, L., Lamb, S., Hilton, D. R. & Poreda, R. J. 2000. Southern limit of mantle-derived geothermal helium emissions in Tibet: implications for lithospheric structure. Earth and Planetary Science Letters 180, 297308.CrossRefGoogle Scholar
Jessup, M. J., Law, R. D., Searle, M. P. & Hubbard, M. S. 2006. Structural evolution and vorticity of flow during extrusion and exhusmation of the Greater Himalayan Slab, Mount Everest Massif, Tibet/Nepal: implications for orogen-scale flow partitioning. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones (eds Law, R. D., Searle, M. P. & Godin, L.), pp. 379413. Geological Society of London, Special Publication no. 268.Google Scholar
Klappa, C. F. 1980. Rhizoliths in terrestrial carbonates: Classification, recognition, genesis and significance. Sedimentology 27, 613–29.CrossRefGoogle Scholar
Lavé, J. & Avouac, J. P. 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. Journal of Geophysical Research 106, 26561–92.CrossRefGoogle Scholar
Liu, Z., Zhang, M., Li, Q. & You, S. 2003. Hydrochemical and isotope characteristics of spring water and travertine in the Baishuitai area (SW China) and their meaning for paleoenvironmental reconstruction. Environmental Geology 44, 698704.CrossRefGoogle Scholar
McNutt, R. H. 2000. Strontium Isotopes. In Environmental Tracers in Subsurface Hydrology (eds Cook, P. G. & Herczeg, A. L.), pp. 1529. Boston/Dordrecht/London: Kluwer Academic Publishers.Google Scholar
Myrow, P. M., Hughes, N. C., Paulsen, T., Williams, I., Parcha, S. K., Thompson, K. R., Bowring, S. A., Peng, S.-C. & Ahluwalia, A. D. 2003. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth and Planetary Science Letters 212, 433–41.CrossRefGoogle Scholar
Nelson, K. D. 1996. Partially molten middle crust beneath southern Tibet; synthesis of Project INDEPTH results. Science 274, 1684–8.CrossRefGoogle ScholarPubMed
Newell, D. L., Crossey, L. J., Karlstrom, K. E., Fischer, T. P. & Hilton, D. R. 2005. Continental-scale links between the mantle and groundwater systems of the Western United States; evidence from travertine springs and regional He isotope data. GSA Today 15, 410.2.0.CO;2>CrossRefGoogle Scholar
O'Neil, J. R., Clayton, R. N. & Mayeda, T. K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 51, 5547–58.CrossRefGoogle Scholar
Palmer, M. R. & Elderfield, H. 1985. Sr isotope composition of sea water over the last 75 Myr. Nature 314, 526–8.CrossRefGoogle Scholar
Pecher, A. 1991. The contact between the higher Himalaya crystallines and the Tibetan sedimentary series: Miocene large-scale dextral shearing. Tectonics 10, 587–98.CrossRefGoogle Scholar
Pederson, J., Karlstrom, K., Sharp, W. & McIntosh, W. 2002. Differential incision of the Grand Canyon related to Quaternary faulting – Constraints from U-series and Ar/Ar dating. Geology 30, 739–42.2.0.CO;2>CrossRefGoogle Scholar
Pedley, H. M. 1987. The Flandrian (Quaternary) Caerwys Tufa, North Wales; an ancient barrage tufa deposit. Proceedings of the Yorkshire Geological Society 46, 141–52.CrossRefGoogle Scholar
Pentecost, A. 1993. British travertines: a review. Proceedings of the Geologists Association 104, 2339.CrossRefGoogle Scholar
Pentecost, A. 2005. Travertine. Berlin, Heidelberg: Springer-Verlag, 446 pp.Google Scholar
Polyak, V. J. & Asmerom, Y. 2001. Late Holocene climate and cultural changes in the southwestern United States. Science 294, 148–51.CrossRefGoogle ScholarPubMed
Royden, L. H. 1997. Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788–90.CrossRefGoogle ScholarPubMed
Searle, M. P. 1999. Extensional and compressional faults in the Everest-Lohtse massif, Khumbu Himalaya, Nepal. Journal of Geological Society, London 156, 227–40.CrossRefGoogle Scholar
Searle, M. P., Law, R. D. & Jessup, M. J. 2006. Crustal structure, restoration and evolution of the Greater Himalaya in Nepal–South Tibet: implications for channel flow and ductile extrusion of the middle crust. In Channel Flow, Ductile Extrusion, and Exhumation in Continental Collision Zones (eds Law, R. D., Searle, M. P. & Godin, I.), pp. 355–78. Geological Society of London, Special Publication no. 268.Google Scholar
Searle, M. P., Simpson, R. L., Law, R. D., Parrish, R. R. & Waters, D. J. 2003. The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal – South Tibet. Journal of the Geological Society, London 160, 345–66.CrossRefGoogle Scholar
Singh, G., Joshi, R. D., Chopra, S. K. & Singh, A. B. 1974. Late Quaternary history of vegetation and climate of the Rajasthan Desert, India. Philosophical Transactions of the Royal Society of London 267, 467501.Google Scholar
Sirocko, F. 1993. Century-scale events in monsoonal climate over the past 24,000 years. Nature 364, 322–4.CrossRefGoogle Scholar
Sweeting, M. M., Bao, F. S. & Zhang, D. 1991. The problem of paleokarst in Tibet. Geographical Journal 157, 316–25.CrossRefGoogle Scholar
Veizer, J. 1989. Strontium isotopes in seawater through time. Annual Review of Earth and Planetary Sciences 17, 141–67.CrossRefGoogle Scholar
Veizer, J. & Compston, W. 1974. 87Sr/86Sr composition of seawater during the Phanerozoic. Geochimica et Cosmochimica Acta 38, 1461–84.CrossRefGoogle Scholar
Warwick, G. T. 1953. Cave formations and deposits. In British Caving (ed. Cullingford, C. H. D.), pp. 6281. London: Routledge and Kegan Paul Ltd.Google Scholar
Yokoyama, T., Nakai, S. & Wakita, H. 1999. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research 88, 99107.CrossRefGoogle Scholar
Yoshimura, K., Lui, Z., Cao, J., Yuan, D., Inokura, Y. & Noto, M. 2004. Deep source CO2 in natural waters and its role in extensive tufa deposition in the Huanglong Ravines, Sichuan, China. Chemical Geology 205, 141–53.CrossRefGoogle Scholar
Zhang, D. D., Zhang, Y. & Zhu, A. 2001. Physical mechanisms for river waterfall tufa (travertine) formation. Journal of Sedimentary Research 71, 205–16.CrossRefGoogle Scholar