Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T17:42:24.729Z Has data issue: false hasContentIssue false

The trachybasaltic volcanics of the Adrano area, Mount Etna, Sicily

Published online by Cambridge University Press:  01 May 2009

A. M. Duncan
Affiliation:
Geology Section, Department of Science, Luton College of Higher Education, Park Square, Luton LU1 3JU, U.K.

Summary

The Adrano area covers approximately 150 km2 of the tower SW flanks of Mount Etna, Sicily. A wide selection of the rocks that occur on the volcano are represented in the area. Lavas of alkalic affinity form by far the greater proportion of the volcanics in the area, and comprise a trachybasaltic suite of lavas ranging from hawaiite through mugearite to benmoreite. There appears to be no overall progressive variation in the chemistry of these trachybasaltic lavas with time; rather that the parental magma has remained fairly constant in composition. Periodically, however, this parental magma has been able to differentiate into more evolved products. The chemical variation shown by the trachybasaltic lavas can be largely explained by crystal fractionation of augite, olivine, plagioclase and titanomagnetite at moderate to low pressures. Crystal fractionation, however, cannot explain the variation in the alkalis which is thought to be affected by volatile transfer.

Type
Articles
Copyright
Copyright © Cambridge University Press 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barberi, F., Civetta, L., Gasperini, P. & Scandone, R. 1974. Evolution of a section of the African—Europe plate boundary: palaeomagnetic and volcanological evidences from Sicily. Earth Planet. Sci. Lett. 22, 123–32.CrossRefGoogle Scholar
Baxter, A. N. 1975. Petrology of the older series lavas, Mauritius, Indian Ocean. Bull. geol. Soc. Am. 86, 1449–59.2.0.CO;2>CrossRefGoogle Scholar
Bowen, A. N. 1928. The Evolution of the Igneous Rocks. Princeton: Princeton University Press.Google Scholar
Brown, G. M. 1967. Mineralogy of basaltic rocks. In Basalts: The Poldervaart Treatise on Rocks of Basaltic Composition (ed. Hess, H. H. and Poldervart, A.), pp. 103–62. New York: Wiley.Google Scholar
Carmichael, I. S. E., Turner, F. J. & Verhoogen, J. 1974. Igneous Petrology. New York: McGraw-Hill.Google Scholar
Condomines, M. & Tanguy, J. C. 1976. Age of Etna determined by 230Th/238U radioactive disequilibrium method. C. r. hebd. Séanc, Acad. Sci., Paris 282D, 1661–4.Google Scholar
Cristofolini, R. 1973. Recent trends in the study of Etna. Phil. Trans. R. Soc. Lond. A 274, 1735.Google Scholar
Cristofolini, R. & Lo Guidice, A. 1969. Le latitandesiti di un complesso intermedio tra Trifoglietto e Mongibello affiorante tra la Valle del Bove ed Adrano–Biancavilla (Etna). Rend. Soc. Ital. Mineral. Petrol. 25, 227–61.Google Scholar
Dewey, J. F., Pitman, W. C., Ryan, W. B. F. & Bonnin, J. 1973. Plate tectonics and the evolution of the Alpine system. Bull. geol. Soc. Am. 84, 3137–80.2.0.CO;2>CrossRefGoogle Scholar
Downes, M. J. 1974. Sector and oscillatory zoning in calcic-augites from Mount Etna, Sicily. Contrib. Mineral. Petrol. 47, 187–96.CrossRefGoogle Scholar
Duncan, A. M. 1976. Pyroclastic flow deposits in the Adrano area, Mount Etna, Sicily. Geol. Mag. 113, 357–63.CrossRefGoogle Scholar
Fodor, R. V., Keil, K. & Bunch, T. E. 1975. Contributions to the mineral chemistry of Hawaiian rocks. IV. Pyroxenes in rocks from Haleakalaand West Maui volcanoes, Hawaii. Contrib. Mineral. Petrol. 50, 173–95.CrossRefGoogle Scholar
Grindley, G. W. 1973, Structural control of volcanism at Etna. Phil. Trans. R. Soc. Lond. 274, 165–75.Google Scholar
Hughes, D. J. & Brown, G. C. 1972. Basalts from Madeira: a petrochemical contribution to the genesis of oceanic alkali rock series. Contrib. Mineral. Petrol. 37, 91109.CrossRefGoogle Scholar
Kieffer, G. 1973. Une é ruption à caracteres Katmaiens, à l'origine de coulées ponceuses et de coulées. responsable de la formation de la caldera du Cratère Elliptique de L 'Etna (Sicile). C. r. hebd. Séanc. Acad. Sci., Paris 277D, 2321–4.Google Scholar
Kieffer, G. 1974. Un aspect particulier du volcanisme ancien de L'Etna (Sicile): les éruptions latiandesitiques fissurales du versant sud-ouest. C. r. hebd. Séanc. Acad. Sci., Paris 278D, 1549–52.Google Scholar
Klerkx, J. 1966. La crystallization de l'apatite dans les levas de L'Etna. Ann. Soc. Belg.. 89B. 450–8.Google Scholar
Klerkx, J. 1970. La caldera de la Valle del Bove: sa signification dans l'évolution de L'Etna, (Sicile). Bull. Volcan. 24, 726–37.CrossRefGoogle Scholar
Kuno, J. 1960. High alumina basalt. J. Petrology 1, 121–45.CrossRefGoogle Scholar
Le Maitre, R. W. 1962. Petrology of volcanic rocks, Gough Island, South Atlantic. Bull. geol. Soc. Am. 73. 1309–40.CrossRefGoogle Scholar
Macdonald, G. A. 1968. Composition and origin of Hawaiian lavas. Geol. Soc. Am. Mem.. 116, 477522.Google Scholar
Macdonald, G. A. & Katsura, T. 1964. Chemical composition of Hawaiian lavas. J. Petrology 5, 82133.CrossRefGoogle Scholar
McKenzie, D. P. 1972. Active tectonics of the Mediterranean region. Geophys. J. R. Astr. Soc. 30, 109–85.CrossRefGoogle Scholar
Rittmann, A. 1973. Structure and evolution of Mount Etna. Phil. Trans. R. Soc. Lond. A. 274. 516.Google Scholar
Rittmann, A. 1974. The geochemical importance of pyromagma. Bull. Volcan. 38. 117.CrossRefGoogle Scholar
Romano, R. & Sturiale, C. 1975. Geologia della tavoletta ‘Monte Etna sud’. Boll. geol. Soc. Ital. 94. 1109–48.Google Scholar
Self, S. & Gunn, B. M. 1976. Petrology, volume and age relations of alkaline and saturated peralkaline volcanics from Terceira, Azores. Contrib. Mineral. Petrol. 54, 293313.CrossRefGoogle Scholar
Streckeisen, A. L. 1967. Classification and nomenclature of igneous rocks. Neues Jb. Miner. Abh.. 107. 144240.Google Scholar
Thompson, R. N., Esson, J. & Dunham, A. C. 1972. Major element chemical variation in the Eocene lavas of Skye, Scotland. J. Petrology 13, 219–53.CrossRefGoogle Scholar
Thornton, C. P. & Tuttle, O. F. 1960. Chemistry of igneous rocks. Am. J. Sci. 258, 664–84.CrossRefGoogle Scholar
Yoder, H. S. & Tilley, C. E. 1962. Origin of basaltic magmas: an experimental study of natural and synthetic rock systems. J. Petrology 3, 342532.CrossRefGoogle Scholar