Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T03:58:34.999Z Has data issue: false hasContentIssue false

Torellian (c. 640 Ma) metamorphic overprint of Tonian (c. 950 Ma) basement in the Caledonides of southwestern Svalbard

Published online by Cambridge University Press:  13 November 2013

JAROSŁAW MAJKA*
Affiliation:
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
YARON BE’ERI-SHLEVIN
Affiliation:
Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel Swedish Museum of Natural History, Stockholm, Sweden
DAVID G. GEE
Affiliation:
Department of Earth Sciences, Uppsala University, Uppsala, Sweden
JERZY CZERNY
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH – University of Science and Technology, Kraków, Poland
DIRK FREI
Affiliation:
Department of Earth Sciences, Stellenbosch University, South Africa
ANNA LADENBERGER
Affiliation:
Geological Survey of Sweden, Uppsala, Sweden
*
Author for correspondence: [email protected]

Abstract

Ion microprobe dating in Wedel Jarlsberg Land, southwestern Spitsbergen, provides new evidence of early Neoproterozoic (c. 950 Ma) meta-igneous rocks, the Berzeliuseggene Igneous Suite, and late Neoproterozoic (c. 640 Ma) amphibolite-facies metamorphism. The older ages are similar to those obtained previously in northwestern Spitsbergen and Nordaustlandet where they are related to the Tonian age Nordaustlandet Orogeny. The younger ages complement those obtained recently from elsewhere in Wedel Jarlsberg Land of Torellian deformation and metamorphism at 640 Ma. The Berzeliuseggene Igneous Suite occurs in gently N-dipping, top-to-the-S-directed thrust sheets on the eastern and western sides of Antoniabreen where it is tectonically intercalated with younger Neoproterozoic sedimentary formations, suggesting that it provided a lower Tonian basement on which upper Tonian to Cryogenian sediments (Deilegga Group) were deposited. They were deformed together during the Torellian Orogeny, prior to deposition of Ediacaran successions (Sofiebogen Group) and overlying Cambro-Ordovician shelf carbonates, and subsequent Caledonian and Cenozoic deformation. The regional importance of the late Neoproterozoic Torellian Orogeny in Svalbard's Southwestern Province and its correlation in time with the Timanian Orogeny in the northern Urals as well as tectonostratigraphic similarities between the Timanides and Pearya (northwestern Ellesmere Island) favour connection of these terranes prior to the opening of the Iapetus Ocean and Caledonian Orogeny.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreichev, V. L. 1998. Isotope Geochronology of Intrusive Magmatism in the Northern Timans. Ekaterinburg: Russian Academy of Sciences – Ural Division, 89 pp. (in Russian).Google Scholar
Armstrong, H. A., Nakrem, H. A. & Ohta, Y. 1986. Ordovician conodonts from the Bulltinden Formation, Motalafjella, central-western Spitsbergen. Polar Research 4, 1723.CrossRefGoogle Scholar
Balashov, Y. A., Tebenkov, A. M., Ohta, Y., Larionov, A. N., Sirotkin, A. N., Gannibal, L. F. & Ryungenen, G. I. 1995. Grenvillian U-Pb zircon ages of quartz porphyry and rhyolite clasts in a metaconglomerate at Vimsodden, southern Spitsbergen. Polar Research 14, 291302.CrossRefGoogle Scholar
Balashov, Y. A., Tebenkov, A. M., Peucat, J. J., Ohta, Y., Larionov, A. N. & Sirotkin, A. N. 1996. Rb-Sr whole rock and U-Pb zircon dating of the granitic-gabbroic rocks from the Skålfjellet Subgroup, southwest Spitsbergen. Polar Research 15, 167–81.Google Scholar
Bernard-Griffiths, J., Peucat, J. J. & Ohta, Y. 1993. Age and nature of protoliths in the Caledonian blueschist-eclogite complex of western Spitsbergen: a combined approach using U-Pb, Sm-Nd and REE whole-rock systems. Lithos 30, 8190.CrossRefGoogle Scholar
Birkenmajer, K. 1975. Caledonides of Svalbard and plate tectonics. Bulletin of the Geological Society of Denmark 24, 119.Google Scholar
Birkenmajer, K. 1990. Geology of the Hornsund Area, Spitsbergen. Geological Map 1:75000, with Explanations. Polish Academy of Sciences, Committee on Polar Research and Silesian University, 44 pp.Google Scholar
Birkenmajer, K. 2002. The Magnethøgda sequence (Hecla Hoek Succession), NW Torell Land, Spitsbergen: a revision of lithostratigraphy and age. Bulletin Polish Academy of Sciences: Earth Sciences 50, 175–91.Google Scholar
Birkenmajer, K. 2010. The Kapp Lyell diamictites (Upper Proterozoic) at Bellsund, Spitsbergen: rock-sequence, sedimentological features, paleoenvironment. Studia Geologica Polonica 133, 750.Google Scholar
Birkenmajer, K., Krajewski, K. P., Pécskay, Z. & Lorenc, M. W. 2010. K-Ar dating of basic intrusions at Bellsund, Spitsbergen, Svalbard. Polish Polar Research 31, 216.CrossRefGoogle Scholar
Bjørnerud, M. 1990. Upper Proterozoic unconformity in northern Wedel-Jarlsberg Land, southwest Spitsbergen: lithostratigraphy and tectonic implications. Polar Research 8, 127–40.CrossRefGoogle Scholar
Bjørnerud, M. 2010. Stratigraphic record of Neoproterozoic ice sheet collapse: the Kapp Lyell diamictite sequence, SW Spitsbergen, Svalbard. Geological Magazine 147, 380–90.CrossRefGoogle Scholar
Cawood, P. A., Strachan, R., Cutts, K., Kinny, P. D., Hand, M. & Pisarevsky, S. 2010. Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic. Geology 38, 99102.CrossRefGoogle Scholar
Černy, P. & Ercit, T. S. 2005. The classification of granitic pegmatites revisited. Canadian Mineralogist 43, 2005–26.CrossRefGoogle Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. In Zircon (eds Hanchar, J. M. & Hoskin, P. W. O.), pp. 469500. Reviews in Mineralogy and Geochemistry no. 53.CrossRefGoogle Scholar
Czerny, J. 1999. Petrogenesis of metavolcanites of the southern part of Wedel Jarlsberg Land (Spitsbergen). Mineralogical Transactions 86, 88 pp.Google Scholar
Czerny, J., Kieres, A., Manecki, M., & Rajchel, J. 1993. Geological Map of the SW Part of Wedel Jarlsberg Land, Spitsbergen 1:25000 (ed. Manecki, A.). Cracow: Institute of Geology and Mineral Deposits, 61 pp.Google Scholar
Czerny, J., Majka, J., Gee, D. G., Manecki, M. & Manecki, A. 2010. Torellian Orogeny: evidence of a Late Proterozoic tectonothermal event in southwestern Svalbard's Caledonian basement. NGF Abstracts and Proceedings, 3536.Google Scholar
Dallmann, W. K., Hjelle, A., Ohta, Y., Salvigsen, O., Maher, H. D., Bjørnerud, M., Hauser, E. C. & Craddock, C. 1990. Geological Map of Svalbard 1:100,000, B11G Van Keulenfjorden. Norsk Polarinstitutt Temakart No. 15, 58 pp.Google Scholar
Dallmeyer, R. D., Peucat, J. J. & Ohta, Y. 1990. Tectonothermal evolution of contrasting metamorphic complexes in northwestern Spitsbergen (Biskayerhalvøya): evidence from 40Ar/39Ar and Rb-Sr mineral ages. Geological Society of America Bulletin 102, 653–63.2.3.CO;2>CrossRefGoogle Scholar
Estrada, S., Piepjohn, K., Henjes-Kunst, F. & von Gosen, W. 2003. Geology, magmatism, and structural evolution of the Yelverton Bay area, northern Ellesmere Island, Arctic Canada. Polarforschung 73, 5975.Google Scholar
Frei, D. & Gerdes, A. 2009. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICPMS. Chemical Geology 261, 261–70.CrossRefGoogle Scholar
Gasser, D. & Andresen, A. 2013. Caledonian terrane amalgamation of Svalbard: detrital zircon provenance of Mesoproterozoic to Carboniferous strata from Oscar II Land, western Spitsbergen. Geological Magazine, published online 4 June 2013. doi: 10.1017/S0016756813000174.CrossRefGoogle Scholar
Gayer, R. A., Gee, D. G., Harland, W. B., Miller, J. A., Spall, H. R., Wallis, R. H. & Winsnes, T. S. 1966. Radiometric age determinations on rocks from Spitsbergen. Norsk Polarinstitutt Skrifter 137, 139.Google Scholar
Gee, D. G. 1966. A note on the occurrence of eclogites in Spitsbergen. Norsk Polarinstitutt Årbok 1964, 240–41.Google Scholar
Gee, D. G., Björklund, L. & Stølen, L. K. 1994. Early Proterozoic basement in Ny Friesland – implications for the Caledonian tectonics of Svalbard. Tectonophysics 231, 171–82.CrossRefGoogle Scholar
Gee, D. G. & Hjelle, A. 1966. On the crystalline rocks of northwest Spitsbergen. Norsk Polarinstitutt Årbok 1964, 3145.Google Scholar
Gee, D. G., Johansson, Å., Ohta, Y., Tebenkov, A. M., Krasilščhikov, A. A., Balashov, Y. A., Larionov, A. N., Gannibal, L. F. & Ryungenen, G. I. 1995. Grenvillian basement and a major unconformity within the Caledonides of Nordaustlandet, Svalbard. Precambrian Research 70, 215–34.CrossRefGoogle Scholar
Gee, D. G. & Tebenkov, A. M. 1996. Two major unconformities beneath the Neoproterozoic Murchinsonfjorden Supergroup in the Caledonides of central Nordaustlandet, Svalbard. Polar Research 15, 8191.CrossRefGoogle Scholar
Gee, D. G. & Tebenkov, A. M. 2004. Svalbard: a fragment of the Laurentian margin. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 191206. Geological Society of London, Memoirs no. 30.Google Scholar
Gerdes, A. & Zeh, A. 2006. Combined U–Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters 249, 4761.CrossRefGoogle Scholar
Gromet, L. P. & Gee, D. G. 1998. An evaluation of the age of high-grade metamorphism in the Caledonides of Biskayerhalvøya. GFF 120, 199208.CrossRefGoogle Scholar
Harland, W. B. 1997. The Geology of Svalbard. Geological Society of London, Memoirs no. 17, 521 pp.Google Scholar
Harland, W. B., Hambry, M. J. & Waddams, P. 1993. The Vendian geology of Svalbard. Norsk Polarinstitutt Skrifter 193, 1130.Google Scholar
Hartz, E. H. & Torsvik, T. H. 2002. Baltica upside-down: a new plate tectonic model for Rodinia and the Iapetus Ocean. Geology 30, 255–58.2.0.CO;2>CrossRefGoogle Scholar
Hellman, F. J., Gee, D. G., Johansson, Å. & Witt-Nilsson, P. 1997. Single-grain Pb-evaporation geochronology constraints basement-cover relationships in the Lower Hecla Hoek Complex of northern Ny Friesland, Svalbard. Chemical Geology 137, 117–34.CrossRefGoogle Scholar
Hellman, F. J., Gee, D. G. & Witt-Nilsson, P. 2001. Late Archean basement in the Bangenhuken Complex of the Nordbreen Nappe, western Ny Friesland, Svalbard. Polar Research 20, 4959.CrossRefGoogle Scholar
Horsfield, W. T. 1972. Glaucophane schists of Caledonian age from Spitsbergen. Geological Magazine 109, 2936.CrossRefGoogle Scholar
Johansson, Å., Gee, D. G., Larionov, A. N., Ohta, Y. & Tebenkov, A. M. 2005. Grenvillian and Caledonian evolution of eastern Svalbard – a tale of two orogenies. Terra Nova 17, 317–25.CrossRefGoogle Scholar
Johansson, Å., Larionov, A. N., Tebenkov, A. M., Gee, D. G., Whitehouse, M. J. & Vestin, J. 2000. Grenvillian magmatism of western and central Nordaustlandet, northeastern Svalbard. Transactions of the Royal Society of Edinburgh: Earth Sciences 90, 221–54.CrossRefGoogle Scholar
Kanat, L. & Morris, A. 1988. A working stratigraphy for central western Oscar II Land, Spitsbergen. Norsk Polarinstitutt Skrifter 190, 125.Google Scholar
Kośmińska, K., Majka, J., Klonowska, I., Krumbholz, M., Manecki, M. & Czerny, J. 2013. New blueschist facies province in the Caledonides of Svalbard. Geophysical Research Abstracts 15, EGU2013-399.Google Scholar
Larionov, A. N. & Tebenkov, A. M. 2004. New SHRIMP-II U-Pb zircon age data from granitic boulders in Vendian tillites of southern coast of Isfjorden, West Spitsbergen. Arctic geology, hydrocarbon resources and environmental challenges. Abstracts and Proceedings of the Geological Society of Norway, NGF 2, 88–9.Google Scholar
Larionov, A. N., Tebenkov, A. M., Gee, D. G., Czerny, J. & Majka, J. 2010. Recognition of Precambrian tectonostratigraphy in Wedel-Jarlsberg Land, southwestern Spitsbergen. Abstracts and Proceedings of the Geological Society of Norway, NGF 1, 106 pp.Google Scholar
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Research 160, 179210.CrossRefGoogle Scholar
Lorenz, H., Gee, D. G., Larionov, A. N. & Majka, J. 2012. The Grenville–Sveconorwegian orogen in the high Arctic. Geological Magazine 149, 875–91.CrossRefGoogle Scholar
Lorenz, H., Pystin, A. M., Olovyanishnikov, V. G. & Gee, D. G. 2004. Neoproterozoic high-grade metamorphism of the Kanin Peninsula, Timanide Orogen, northern Russia. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 5968. Geological Society of London, Memoir, no. 30.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00 a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication no. 4.Google Scholar
Majka, J., Czerny, J., Larionov, A. N., Pršek, J. & Gee, D. G. 2012. Neoproterozoic pegmatite from Skoddefellet, Wedel Jarlsberg Land, Spitsbergen: additional evidence for c. 640Ma tectonothermal event in the Caledonides of Svalbard. Polish Polar Research 33, 117.CrossRefGoogle Scholar
Majka, J., Ladenberger, A. & Kuznetsov, N. 2009. Crustal growth and crustal recycling in the Neoproterozoic Torellian Orogen, SW Svalbard: U/Pb zircon geochronology and Hf isotopic characteristics. Mineralogia – Special Papers 35, 98.Google Scholar
Majka, J., Mazur, S., Manecki, M., Czerny, J. & Holm, D. 2008. Late Neoproterozoic amphibolite facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U-Th-Pb dating of monazite. Geological Magazine 145, 822–30.CrossRefGoogle Scholar
Major, H. & Winsnes, T. S. 1955. Cambrian and Ordovician fossils from Sørkapp Land, Spitsbergen. Norsk Polarinstitutt Skrifter 106, 147.Google Scholar
Malone, S. J. & McClelland, W. C. 2010. Detrital zircon geochronology of Neoproterozoic and Paleozoic units of the Pearya Terrane, Ellesmere Island, Canada. Geological Society of America Meeting, paper no. 243–3.Google Scholar
Manecki, M., Holm, D. K., Czerny, J. & Lux, D. 1998. Thermochronological evidence for late Proterozoic (Vendian) cooling in southwest Wedel Jarlsberg Land, Spitsbergen. Geological Magazine 135, 63–9.CrossRefGoogle Scholar
Martin, L. A. J., Duchêne, S., Deloule, E. & Vanderhaegh, O. 2008. Mobility of trace elements and oxygen in zircon during metamorphism: consequences for geochemical tracing. Earth and Planetary Science Letters 267, 161–74.CrossRefGoogle Scholar
Mattinson, J. M. 2010. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chemical Geology 275, 186–98.CrossRefGoogle Scholar
Mazur, S., Czerny, J., Majka, J., Manecki, M., Holm, D. K., Smyrak, A. & Wypych, A. 2009. A strike-slip terrane boundary in Wedel Jarlsberg Land, Svalbard, and its bearing on correlations of SW Spitsbergen with the Pearya terrane and Timanide belt. Journal of the Geological Society, London 166, 529–44.CrossRefGoogle Scholar
McLaren, A. C., Fitzgerald, J. D. & Williams, I. S. 1994. The microstructure of zircon and its influence on the age determination from Pb/U isotopic ratios measured by ion microprobe. Geochimica et Cosmochimica Acta 58, 9931005.CrossRefGoogle Scholar
Myhre, P. I., Corfu, F. & Andresen, A. 2009. Caledonian anatexis of Grenvillian crust: a U/Pb study of Albert I Land, NW Svalbard. Norwegian Journal of Geology 89, 173–91.Google Scholar
Nasdala, L., Hofmeister, W., Norberg, N., Mattinson, J. M., Corfu, F., Dörr, W., Kamo, S. L., Kennedy, A. K., Kronz, A., Reiners, P. W., Frei, D., Košler, J., Wan, Y., Götze, J., Häger, T., Kröner, A. & Valley, J. W. 2008. Zircon M257 – a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostandards and Geoanalytical Research 32, 247–65.CrossRefGoogle Scholar
Nordenskiöld, A. E 1876. Sketch of the geology of Ice Sound and Bell Sound, Spitzbergen. Geological Magazine (Decade 2) 3, 1623.CrossRefGoogle Scholar
Ohta, Y. 1982. Lithostratigraphy of the Hecla Hoek rocks in central Nordaustlandet and their relationships to the Caledonian granitic-migmatitic rocks. Norsk Polarinstitutt Skrifter 178, 4160.Google Scholar
Ohta, Y. 1985. Geochemistry of Precambrian basic igneous rocks between St. Jonsfjorden and Isfjorden, central western Spitsbergen, Svalbard. Polar Research 3, 4967.CrossRefGoogle Scholar
Ohta, Y. & Larionov, A. M. 1998. Grenvillian single grain zircon Pb age of granitic rock from the southern island of Hesteskoholmen, Liefdefjorden, NW Spitsbergen. Polar Research 17, 147–54.CrossRefGoogle Scholar
Ohta, Y., Larionov, A. N. & Tebenkov, A. M. 2003. Single-grain zircon dating of the metamorphic and granitic rocks from the Biscayarhalvøya-Holtedahlfonna zone, north-west Spitsbergen. Polar Research 22, 247–65.Google Scholar
Ohta, Y., Larionov, A. N., Tebenkov, A. M., Lepvrier, C., Maluski, H., Lange, M. & Hellibrant, B. 2002. Single zircon Pb-evaporation and 40Ar/39Ar dating of the metamorphic and granitic rocks in north-west Spitsbergen. Polar Research 21, 7389.CrossRefGoogle Scholar
Pettersson, C. H., Pease, V. & Frei, D. 2009. U-Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian-Sveconorwegian orogeny and development of Rodinia. Precambrian Research 175, 206–20.CrossRefGoogle Scholar
Pettersson, C. H., Pease, V. & Frei, D. 2010. Detrital zircon U-Pb ages of Silurian-Devonian sediments from NW Svalbard: a fragment of Avalonia and Laurentia? Journal of the Geological Society, London 167, 1019–32.CrossRefGoogle Scholar
Pettersson, C. H., Tebenkov, A. M., Larionov, A. N., Andresen, A. & Pease, V. 2009. Timing of migmatization and granite genesis in the Northwestern Terrane of Svalbard, Norway: implications for regional correlations in the Arctic Caledonides. Journal of the Geological Society, London 166, 147–58.CrossRefGoogle Scholar
Peucat, J. J., Ohta, Y., Gee, D. G. & Bernard-Griffiths, J. 1989. U-Pb, Sr, and Nd evidence for Grenvillian and latest Proterozoic tectonothermal activity in the Spitsbergen Caledonides, Arctic Ocean. Lithos 22, 275–85.CrossRefGoogle Scholar
Piepjohn, K., Thiedig, F. & Manby, G. M. 2001. Nappe stacking on Brøggerhalvøya, NW Spitsbergen. In Intra-Continental Fold Belts CASE 1 West Spitsbergen (ed. Tessensohned, F.), pp. 83108. Geologisches Jahrbuch, Polar Issue no. 7.Google Scholar
Scrutton, C. T., Horsfield, W. T. & Harland, W. B. 1976. Silurian fossils from western Spitsbergen. Geological Magazine 113, 519–23.CrossRefGoogle Scholar
Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plešovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.CrossRefGoogle Scholar
Smith, M. P. 2000. Cambro-Ordovician stratigraphy of Bjørnøya and North Greenland: constraints on tectonic models for the Arctic Caledonides and the Tertiary opening of the Greenland Sea. Journal of the Geological Society, London 157, 459–70.CrossRefGoogle Scholar
Stacey, J. S. & Kramers, J. D. 1975. Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth and Planetary Science Letters 26, 207–21.CrossRefGoogle Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention of the use of decay constants in geo- and cosmo-chronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar
Tebenkov, A. 1983. Late Precambrian magmatic formations of Nordaustlandet. In Geologiya Spitsbergena: sbornik nauchnych trudov (The Geology of Spitsbergen: a collection of papers) (eds Krasilshikov, A. A. & Basovs, V. A.), pp. 7486. Leningrad: Sevmorgeo (in Russian).Google Scholar
Tebenkov, A., Sandelin, S., Gee, D. G. & Johansson, Å. 2002. Caledonian migmatization in central Nordaustlandet, Svalbard. Norsk Geologisk Tidskrift 82, 1528.Google Scholar
Trettin, H. P. 1987. Pearya: a composite terrane with Caledonian affinities in northern Ellesmere Island. Canadian Journal of Earth Sciences 24, 224–45.CrossRefGoogle Scholar
Whitehouse, M. J., Kamber, B. & Moorbath, S. 1999. Age significance of U-Th-Pb zircon data from early Archean rocks of west Greenland – a reassessment based on combined ion-microprobe and imaging studies. Chemical Geology 160, 201–24.CrossRefGoogle Scholar
Wiedenbeck, M. 1995. An example of reverse discordance during ion microprobe zircon dating: an artifact of enhanced ion yields from a radiogenic labile Pb. Chemical Geology 125, 197218.CrossRefGoogle Scholar
Wiedenbeck, M., All'e, P., Corfu, F., Griffin, W., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analysis. Geostandards Newsletter 19, 123.CrossRefGoogle Scholar
Witt-Nilsson, P., Gee, D. G. & Hellman, F. 1998. Tectonostratigraphy of the Caledonian Atomfjella Antiform of northern Ny Friesland, Svalbard. Norsk Geologisk Tidsskrift 78, 6780.Google Scholar
Supplementary material: File

Majka et al. Supplementary Material

Tables and Figures

Download Majka et al. Supplementary Material(File)
File 992.3 KB