Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T20:09:22.945Z Has data issue: false hasContentIssue false

Testing the precision of bioevents

Published online by Cambridge University Press:  15 May 2009

C. R. C. PAUL*
Affiliation:
Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
M. A. LAMOLDA
Affiliation:
Departarmento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada, Avenida de Fuentenueva s/n, 18002, Granada, Spain
*
*Author for correspondence: [email protected]

Abstract

Deciding which of two bioevents is the less diachronous is a common problem in biostratigraphy. The most accurate correlation uses the finest timescale available. Chemostratigraphy or cyclostratigraphy offer a potential precision of about 10 ka. Graphic correlation can then be used to test the precision of bioevents and to quantify any mismatch. It can also be used to determine in which section any event occurs earlier. Application of these ideas to correlation of the Cenomanian–Turonian and Coniacian–Santonian boundaries demonstrates that some bioevents are as precise as chemo- and cyclostratigraphy, but that most are not. Two problems occur with bioevents. First they may not be recognizable in all sections. Second, where they are recognizable, they may be diachronous. In the former case, calculating confidence intervals on known ranges in sections where the relevant fossil has been recorded is an alternative test. Large confidence intervals suggest that both first and last occurrences of a fossil may be diachronous bioevents. At the Cenomanian–Turonian boundary the following bioevents (in stratigraphic order) appear to be reliable time planes for international correlation. The last occurrences of (1) Corolithion kennedyi, (2) Rotalipora greenhornensis, (3) Axopodorhabdus albianus, (4) Rotalipora cushmani, (5) Lithraphidites acutus, (6) Microstaurus chiastius and (7) the first occurrence of Quadrum gartneri. At the Coniacian–Santonian boundary only the first and last occurrences of Platyceramus undulatoplicatus, and the first occurrences of Platyceramus cycloides and Lucianorhabdus cayeuxii have been identified as potentially reliable bioevents.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agterberg, F. P. & Nel, L. D. 1982. Algorithms for the ranking of stratigraphic events. Computers and Geosciences 8, 6990.CrossRefGoogle Scholar
Alroy, J. 1994. Appearance event ordination: a new biochronological method. Paleobiology 20, 191207.CrossRefGoogle Scholar
Anderson, R. Y. & Dean, W. E. 1988. Lacustrine varve formation through time. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 215–35.CrossRefGoogle Scholar
Blank, R. G. & Ellis, C. H. 1982. The probable range concept applied to the biostratigraphy of marine microfossils. Journal of Geology 90, 415–33.CrossRefGoogle Scholar
Bralower, T. J. 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian–Turonian Boundary interval: implications for the origin and timing of oceanic anoxia. Paleoceanography 3, 275316.CrossRefGoogle Scholar
Brower, J. C. & Burroughs, W. A. 1982. A simple method for quantitative biostratigraphy. In Quantitative Stratigraphic Correlation (eds Cubitt, J. M. & Reyment, R. A.), pp. 6183. Chichester: Wileys.Google Scholar
Crux, J. A. 1982. Upper Cretaceous (Cenomanian to Campanian) calcareous nannofossils. In Stratigraphical index of Calcareous Nannofossils (ed. Lord, A. R.), pp. 81135. British Micropalaeontological Society Special Publication.Google Scholar
Gale, A. S. 1995. Cyclostratigraphy and correlation of the Cenomanian Stage in Western Europe. In Orbital Forcing Timescales and Cyclostratigraphy (eds House, M. R. & Gale, A. S.), pp. 177–97. Geological Society of London, Special Publication no. 85.Google Scholar
Gale, A. S., Kennedy, W. J., Lees, J. A., Petrizzo, M. R. & Walaszczyk, I. 2007. An integrated study (inoceramid bivalves, ammonites, calcareous nannofossils, planktonic foraminifera, stable carbon isotopes) of the Ten Mile Creek section, Lancaster, Dallas County, north Texas, a candidate Global boundary Stratotype Section and Point for the base of the Santonian Stage. Acta Geologica Polonica 57, 113–60.Google Scholar
Gilbert, G. K. 1895. Sedimentary measurement of Cretaceous time. Journal of Geology 3, 121–7.CrossRefGoogle Scholar
Gradstein, F. M. 1985. Ranking and scaling in exploration micropaleontology. In Quantitative Stratigraphy (eds Gradstein, F. M., Agterberg, F. P., Brower, J. C. & Schwarzacher, W. S.), pp. 109160. Dordrecht: Riedel.Google Scholar
Guex, J. 1977. Une nouvelle méthode d'analyse biochronologique. Note préliminaire. Bulletin de la Société Vaudoise des Sciences Naturelles 73, 309–22.Google Scholar
Guex, J. & Davaud, E. 1984. Unitary associations method: use of graph theory and computer algorithm. Computers and Geosciences 10, 6979.CrossRefGoogle Scholar
Hay, W. W. 1972. Probabilistic stratigraphy. Eclogae geologicae Helvetiae 65, 255–66.Google Scholar
Hodges, P. 1994. The base of the Jurassic system: new data on the first appearance of Psiloceras planorbis in southwest Britain. Geological Magazine 131, 841–4.CrossRefGoogle Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology 21, 92109.CrossRefGoogle Scholar
House, M. R. 1985. A new approach to an absolute timescale from measurements of orbital cycles and sedimentary microrhythms. Nature, London 315, 721–5.CrossRefGoogle Scholar
Howe, R. W., Sikora, P. J., Gale, A. S. & Bergen, J. A. 2007. Calcareous nannofossil and planktonic foraminiferal biostratigraphy of proposed stratotypes for the Coniacian/Santonian boundary: Olazagutia, northern Spain; Seaford Head, southern England; and Ten Mile Creek, Texas, USA. Cretaceous Research 28, 6192.CrossRefGoogle Scholar
Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, D. A., Horne, D. & Rosenfeld, A. 1988. Microfossils and the Cenomanian–Turonian (late Cretaceous) oceanic anoxic event. Cretaceous Research 9, 3103.CrossRefGoogle Scholar
Jarvis, I., Gale, A. S., Jenkyns, H. C. & Pearce, M. A. 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geological Magazine 143, 561608.CrossRefGoogle Scholar
Jefferies, R. P. S. 1963. The stratigraphy of the Actinocamax plenus Subzone (Turonian) in the Anglo-Paris Basin. Proceedings of the Geologists' Association 74, 133.CrossRefGoogle Scholar
Jenkyns, H. C., Gale, A. S. & Corfield, R. 1994. Carbon- and oxygen-isotope stratigraphy of the English chalk and the Italian scaglia and its palaeoclimatic significance. Geological Magazine 131, 134.CrossRefGoogle Scholar
Kemp, D. B. & Coe, A. L. 2007. A nonmarine record of eccentricity forcing through the Upper Triassic of southwest England and its correlation with the Newark Basin astronomically calibrated geopolarity timescale from North America. Geology 35, 991–4.CrossRefGoogle Scholar
Lamolda, M. A. & Hancock, J. M. 1996. The Santonian Stage and substages. In Proceedings, Second International Symposium on Cretaceous Stage Boundaries, Brussels 8–16 September 1995 (eds Rawson, P. F., Dhondt, A. V., Hancock, J. M. & Kennedy, W. J.), pp. 95–102. Bulletin de l'Institut Royal des Sciences Naturelles de Belgique 66.Google Scholar
Lamolda, M. A. & Paul, C. R. C. 2007. Carbon and oxygen stable isotopes across the Coniacian–Santonian boundary at Olazagutia, N. Spain. Cretaceous Research 28, 3745.CrossRefGoogle Scholar
Lamolda, M. A., Gorostidi, A. & Paul, C. R. C. 1994. Quantitative estimates of calcareous nannofossil changes across the Plenus Marls (latest Cenomanian), Dover, England: implications for the generation of the Cenomanian–Turonian Boundary Event. Cretaceous Research 14, 143–64.CrossRefGoogle Scholar
Mann, K. O. & Lane, H. R. (eds) 1995. Graphic Correlation. Special Publication, Society of Economic Paleontologists and Mineralogists no. 53. Tulsa: SEPM, 263 pp.CrossRefGoogle Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16, 110.CrossRefGoogle Scholar
Marshall, J. D. 1992. Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geological Magazine 129, 143–60.CrossRefGoogle Scholar
Miller, A., Holland, S. M., Meyer, D. L. & Dattilo, B. F. 2001. The use of faunal gradient analysis for interregional correlation and assessment of changes in sea-floor topography in the type Cincinnatian. Journal of Geology 109, 603–13.CrossRefGoogle Scholar
Mitchell, S. F., Ball, J. D., Crowley, S. F., Marshall, J. D., Paul, C. R. C. & Veltkamp, C. J. 1997. Isotope data from Cretaceous chalks and foraminifera: environmental or diagenetic signal? Geology 25, 691–4.2.3.CO;2>CrossRefGoogle Scholar
Mitchell, S. F., Paul, C. R. C. & Gale, A. S. 1996. Carbon isotopes and sequence stratigraphy. In High Resolution Sequence Stratigraphy: Innovations and Applications (eds Howell, J. A. & Aitken, J. F..), pp. 1124. Geological Society of London, Special Publication no. 104.Google Scholar
Mortimore, R. N. 1986. Stratigraphy of the Upper Cretaceous White Chalk of Sussex. Proceedings of the Geologists' Association 97, 97139.CrossRefGoogle Scholar
Mortimore, R. N. & Pomerol, B. 1987. Correlation of the Upper Cretaceous White Chalk (Turonian to Campanian) of the Anglo-Paris basin. Proceedings of the Geologists' Association 98, 97143.CrossRefGoogle Scholar
Owen, D. 1996. Interbasinal correlation of the Cenomanian Stage; testing the lateral continuity of sequence boundaries. In High Resolution Sequence Stratigraphy: Innovations and Applications (eds Howell, J. A. & Aitken, J. F..), pp. 269–93. Geological Society of London, Special Publication no. 104.Google Scholar
Paul, C. R. C. 1985. The adequacy of the fossil record reconsidered. In Evolutionary case histories from the fossil record (eds Cope, J. C. W. & Skelton, P. W..), pp. 7–16. Special Papers in Palaeontology 33.Google Scholar
Paul, C. R. C. 1987. Stratigraphic mensuration. Lethaia 20, 256.CrossRefGoogle Scholar
Paul, C. R. C., Allison, P. A. & Brett, C. E. 2008. The occurrence and preservation of ammonites in the Blue Lias Formation (Lower Jurassic) of Devon and Dorset, England and their palaeoecological, sedimentological and diagenetic significance. Palaeogeography, Palaeoclimatology, Palaeoecology 270, 258–72.CrossRefGoogle Scholar
Paul, C. R. C., Mitchell, S. F., Lamolda, M. A. & Gorostidi, A. 1994. The Cenomanian–Turonian boundary event in northern Spain. Geological Magazine 131, 801–17.CrossRefGoogle Scholar
Raup, D. M. & Sepkoski, J. J. 1986. Periodic extinction of families and genera. Science 231, 833–6.CrossRefGoogle ScholarPubMed
Robinson, N. D. 1986. Lithostratigraphjy of the Chalk Group of the North Downs, southeast England. Proceedings of the Geologists' Association 97, 141–70.CrossRefGoogle Scholar
Sadler, P. M. 2003. Constrained optimization approaches to the paleobiologic seriation problems: a users' guide and reference manual to the Conop family of programs. Version 7.0. Copyright 1998–2003, P. M. Sadler.Google Scholar
Sadler, P. M. 2004. Quantitative biostratigraphy – achieving finer resolution in global correlation. Annual Review of Earth and Planetary Science 32, 187213.CrossRefGoogle Scholar
Shaw, A. B. 1964. Time in Stratigraphy. New York: McGraw-Hill, xi + 365 pp.Google Scholar
Shaw, A. B. 1971. The butterfingered handmaiden. Journal of Paleontology 45, 15.Google Scholar
Strauss, D. & Sadler, P. M. 1987. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21, 411–27.CrossRefGoogle Scholar
Sweet, W. C. 1984. Graphic correlation of upper Middle and Upper Ordovician rocks, North American mid-continent province, U.S.A. In Aspects of the Ordovician System (ed. Bruton, D. L..), pp. 2335. University of Oslo.Google Scholar