Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T17:24:15.042Z Has data issue: false hasContentIssue false

Taxonomy and palaeoenvironmental distribution of palaeopascichnids

Published online by Cambridge University Press:  13 June 2022

Anton Kolesnikov*
Affiliation:
Geological Institute of the Russian Academy of Sciences, Pyzhevsky Lane 7, Moscow119017, Russia Institute of the Earth’s Crust of the Siberian Branch of the Russian Academy of Sciences, Lermontova Street 128, Irkutsk664033, Russia
Vladislav Desiatkin
Affiliation:
Geological Institute of the Russian Academy of Sciences, Pyzhevsky Lane 7, Moscow119017, Russia Lomonosov Moscow State University, Leninskie Gory 1, Moscow119234, Russia
*
Author for correspondence: Anton Kolesnikov, Email: [email protected]

Abstract

Palaeopascichnida is a problematic group of extinct organisms that is globally distributed in Ediacaran sequences of Avalonia, Baltica, Siberia, South China and Australia. The fossils related to Palaeopascichnida consist of serially or cluster-like arranged, millimetre- to centimetre-scale globular or allantoid chambers, which are characterized by substantial differences in preservation, leading to no consistent diagnosis for these organisms. Here we integrate morphometric variation, stratigraphic distribution and habitat settings of more than 1200 specimens from all known fossil localities. The results of the morphological analysis demonstrate variation in chamber shape and size, and allow us to recognize six valid species within the group. Statistical analysis of the specimen distribution with respect to sedimentary environments indicates a significant difference in palaeoecological settings between species, making a significant contribution to the evolution and systematic palaeontology of these problematic organisms and perspective on their use in Neoproterozoic biostratigraphy. Our revision and systematic study sheds new light on one of the least studied groups of the late Ediacaran biota.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alve, E and Goldstein, ST (2010) Dispersal, survival and delayed growth of benthic foraminiferal propagules. Journal of Sea Research 63, 3651.CrossRefGoogle Scholar
Antcliffe, JB, Gooday, AJ and Brasier, MD (2011) Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus . Palaeontology 54, 1157–75.CrossRefGoogle Scholar
Becker, YuR (2010) Geologitcheskii potentsial drevnikh ikhnofossilii v stratotipe pozdnego dokembriya Yuzhnogo Urala. Regionalnaya Geologiya i Metallogeniya 43, 1835 (in Russian).Google Scholar
Becker, YuR (2013) Ichnofossils – a new paleontological object in the late Precambrian stratotype of the Urals. Litosfera 1, 5280.Google Scholar
Becker, YuR and Kishka, NV (1989) Discovery of the Ediacaran biota in the South Urals. In Theoretical and Applied Aspects of Modern Paleontology (eds Bogdanova, TN & Khozatsky, LI), pp. 109–20. Proceedings of the XXXIII Session of the All-Union Paleontological Society. Leningrad: Nauka.Google Scholar
Becker-Kerber, B, Paim, PSG, Junior, FC, Girelli, TJ, Zucatti da Rosa, AL, El Albani, A, Oses, GL, Prado, GMEM, Figueiredo, M, Simoes, LSA and Pacheco, MLAF (2020) The oldest record of Ediacaran macrofossils in Gondwana (∼563 Ma, Itajaí Basin, Brazil). Gondwana Research 84, 211–28.CrossRefGoogle Scholar
Bobkov, NI, Kolesnikov, AV, Maslov, AV and Grazhdankin, DV (2019) The occurrence of Dickinsonia in non-marine facies. Estudios Geologicos 75, e096.CrossRefGoogle Scholar
Chistyakov, BG, Kalmykova, NA, Nesov, LA and Suslov, GA (1984) O nalitchii vendskikh otlozhenii v srednem tetchenii r. Onegi i vozmozhnom suschestvovanii obolotchnikov (Tinicata: Chordata) v dokembrii. Vestnik Leningradskogo Universiteta, Seriya Geologicheskaya 6, 1119 (in Russian).Google Scholar
Cope, JCW (1982) Precambrian fossils of the Carmarthen area, Dyfed. Nature in Wales n.s. 1, 11–6.Google Scholar
Darroch, SAF, Boag, TH, Racicot, RA, Tweedt, S, Mason, SJ, Erwin, DH and Laflamme, M (2016) A mixed Ediacaran–Metazoan assemblage from the Zaris Sub-basin, Namibia. Palaeogeography, Palaeoclimatology, Palaeoecology 459, 198208.CrossRefGoogle Scholar
Darroch, SAF, Cribb, AT, Buatois, LA, Germs, GJB, Kenchington, CG, Smith, EF, Mocke, H, O’Neil, GR, Schiffbauer, JD, Maloney, KM, Racicot, RA, Turk, KA, Gibson, BM, Almond, J, Koester, B, Boag, TH, Tweedt, SM and Laflamme, M (2021) The trace fossil record of the Nama Group, Namibia: exploring the terminal Ediacaran roots of the Cambrian explosion. Earth-Science Reviews 212, 103435.CrossRefGoogle Scholar
Desiatkin, VD, Kolesnikov, AV, Rimsky, AA, Sysoeva, AO, Terekhova, VA, Kuzntestov, NB, Shazillo, AV, Latysheva, IV, Romanyuk, TV and Fedonkin, MA Palaeopascichnids from the Upper Vendian Chernyi Kamen Formation of the Middle Urals (Perm Region). Doklady Earth Sciences 499, 643–7.CrossRefGoogle Scholar
Dillon, WR and Goldstein, M (1984) Multivariate Analysis: Methods and Applications. Chichester: Wiley, 608 pp.Google Scholar
Droser, ML and Gehling, JG (2008) Synchronous aggregate growth in an abundant new ediacaran tubular organism. Science 319, 1660–62.CrossRefGoogle Scholar
Fedonkin, MA (1976) Sledy mnogokletotchnykh iz valdaiskoi serii. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya 4, 129–32 (in Russian).Google Scholar
Fedonkin, MA (1980) Iskopaemye sledy dokembriiskikh Metazoa. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya 1, 3946 (in Russian).Google Scholar
Fedonkin, MA (1981) White Sea biota of Vendian: Precambrian non-skeletal fauna in the Russian Platform North. In Transactions of the Geological Institute, vol. 342 (ed BM Keller), pp. 1–100, Moscow: Nauka.Google Scholar
Fedonkin, MA, Gehling, JG, Grey, K, Narbonne, GM and Vickers-Rich, P (2007) The Rise of Animals: Evolution and Diversification of the Kingdom Animalia. Baltimore: Johns Hopkins University Press, 326 pp.Google Scholar
Fedonkin, MA (1985) Palaeoichnology of Vendian Metazoa. In The Vendian System: Substantiation from the Perspective of Historical Geology and Palaeontology (eds Sokolov, BS & Iwanowski, AB), pp. 112–7. Moscow: Nauka.Google Scholar
Fedonkin, MA (1990) Palaeoichnology of Vendian Metazoa. In The Vendian System, vol. 1, Paleontology (eds Sokolov, BS and Iwanowski, AB), pp. 132–7. Berlin and Heidelberg: Springer-Verlag.Google Scholar
Fedonkin, MA (1983) Non-skeletal fauna of Podolia, Dniester Valley. In The Vendian of Ukraine (eds Velikanov, VA, Aseeva, EA & Fedonkin, MA), pp. 128–39. Kiev: Naukova Dumka.Google Scholar
Gehling, JG and Droser, ML (2009) Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews 96, 196206.CrossRefGoogle Scholar
Gehling, JG, Droser, ML, Jensen, S and Runnegar, BN (2005) Ediacara organisms: relating form to function. In Evolving Form and Function: Fossils and Development (ed. Briggs, DEG), pp. 43–6. Proceedings of a symposium honouring Adolph Seilacher for his contributions to palaeontology in celebration of his 80th birthday. New Haven: Peabody Museum of Natural History, Yale University.Google Scholar
Gehling, JG, Narbonne, GM and Anderson, MM (2000) The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology 43, 427546.CrossRefGoogle Scholar
Glaessner, M (1969) Trace fossils from the Precambrian and basal Cambrian. Lethaia 2, 369–93.CrossRefGoogle Scholar
Gnilovskaya, MB (1985) Vendotaenids – Vendian Metaphyta. In The Vendian System: Substantiation from the Perspective of Historical Geology and Palaeontology (eds Sokolov, BS & Iwanowski, AB), pp. 117–25. Moscow: Nauka.Google Scholar
Gnilovskaya, MB (1990) Vendotaenids – Vendian Metaphyta. In The Vendian System, Vol. 1, Paleontology (eds Sokolov, BS and Iwanowski, AB), pp. 138–48. Berlin and Heidelberg: Springer-Verlag.Google Scholar
Golubkova, EYu, Kushim, EA, Kuznetsov, AB, Yanovskii, AS, Maslov, AV, Shvedov, SD and Plotkina, YuV (2018) Redkinian biota of macroscopic fossils from the Northwestern East European Platform (South Ladoga region). Doklady Earth Sciences 479, 300–4.CrossRefGoogle Scholar
Grazhdankin, D (2014) Patterns of evolution of the Ediacaran soft-bodied biota. Journal of Paleontology 88, 269–83.CrossRefGoogle Scholar
Grazhdankin, DV, Balthasar, U, Nagovitsin, KE and Kochnev, BB (2008) Carbonate- hosted Avalon-type fossils in Arctic Siberia. Geology 36, 803–6.CrossRefGoogle Scholar
Grazhdankin, DV and Maslov, AV (2015) The room for the Vendian in the International Chronostratigraphic Chart. Russian Geology and Geophysics 56, 549–59.CrossRefGoogle Scholar
Grazhdankin, DV, Maslov, AV, Krupenin, MT and Ronkin, YuL (2010) Depositional Systems of the Sylvitsa Group (Upper Vendian of the Central Urals). Ekaterinburg: UrO RAN, 280 pp.Google Scholar
Guisan, A, Edwards, TC and Hastie, JT (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling 157, 89100.CrossRefGoogle Scholar
Haines, PW (2000) Problematic fossils in the late Neoproterozoic Wonoka Formation, South Australia. Precambrian Research 100, 97108.CrossRefGoogle Scholar
Hastie, TJ and Tibshirani, RJ (1986) Generalized additive models. Statistical Science 1, 297318.Google Scholar
Hawco, JB, Kenchigton, CG and McIlroy, D (2019) A quantitative and statistical discrimination of morphotaxa within the Ediacaran genus Palaeopascichnus . Papers in Palaeontology 7, 657–73. doi: 10.1002/spp2.1290.Google Scholar
Högström, AES, Jensen, S, Palacios, T and Ebbestad, JOR (2013) New information on the Ediacaran-Cambrian transition in the Vesteranda Group, Finnmark, northern Norway, from trace fossils and organic-walled microfossils. Norwegian Journal of Geology 93, 95106.Google Scholar
Ivantsov, AYu (2017) Finds of Ediacaran-type fossils in Vendian deposits of the Yudoma Group, eastern Siberia. Doklady Earth Sciences 472, 143–6.CrossRefGoogle Scholar
Ivantsov, AYu (2018) Vendian macrofossils of the Yudoma Group, southeast of the Siberian Platform. Paleontological Journal 52, 1335–46.CrossRefGoogle Scholar
Ivantsov, AYu, Gritsenko, VP, Paliy, VM, Velikanov, VA, Konstantinenko, LI, Menasova, ASh, Fedonkin, MA, Zakrevskaya, MA and Serezhnikova, EA (2015) Upper Vendian Macrofossils of Eastern Europe. Middle Dniester Area and Volhynia. Moscow: PIN RAS, 144 pp.Google Scholar
Ivantsov, AYu, Razumovskiy, AA and Zakrevskaya, MA (2018) Upper Vendian Macrofossils of Eastern Europe. Middle and Southern Urals. Moscow: PIN RAS, 190 pp.Google Scholar
Jenkins, RJF (1995) The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Research 73, 5169.CrossRefGoogle Scholar
Jensen, S (2003) The Proterozoic and earliest Cambrian trace fossil record: patterns, problems and perspectives. Integrative & Comparative Biology 43, 219–28.CrossRefGoogle ScholarPubMed
Jensen, S, Droser, ML and Gehling, JG (2006) A critical look at the Ediacaran trace fossil record. In Neoproterozoic Geobiology and Paleobiology (eds Xiao, S and Kaufman, AJ), pp. 115–57., Dordrecht: Springer.CrossRefGoogle Scholar
Jensen, S, Högström, AES, Høyberget, M, Meinhold, G, McIlroy, D, Ebbestad, JOR, Taylor, WL, Agic, H and Palacios, T (2018) New occurrences of Palaeopascichnus from the Stáhpogieddi Formation, Arctic Norway, and their bearing on the age of the Varanger Ice Age. Canadian Journal of Earth Sciences 55, 110.CrossRefGoogle Scholar
Kolesnikov, AV (2019) Stratigraphic correlation potential of the Ediacaran palaeopascichnids. Estudios Geologicos 75, e102.CrossRefGoogle Scholar
Kolesnikov, AV and Bobkov, NI (2019) Revisiting the age of the Asha Group in the South Urals. Estudios Geologicos 75, e103.CrossRefGoogle Scholar
Kolesnikov, AV, Liu, AG, Danelian, T and Grazhdankin, DV (2018b) A reassessment of the problematic Ediacaran genus Orbisiana Sokolov 1976. Precambrian Research 316, 197205.CrossRefGoogle Scholar
Kolesnikov, AV, Marusin, VV, Nagovitsin, KE, Maslov, AV and Grazhdankin, DV (2015) Ediacaran biota in the aftermath of the Kotlinian Crisis: Asha Group of the South Urals. Precambrian Research 263, 5978.CrossRefGoogle Scholar
Kolesnikov, AV, Rogov, VI, Bykova, NV, Danelian, T, Clausen, S, Maslov, AV and Grazhdankin, DV (2018a) The oldest skeletal macroscopic organism Palaeopascichnus linearis . Precambrian Research 316, 2437.CrossRefGoogle Scholar
Kushim, EA, Golubkova, EYu and Plotkina, YuV (2016) Biostratigrafitcheskoe rastchlenenie vend-kembriiskikh otlozhenii Yuzhnogo Priladozhiya. Vestnik Voronezhskogo Gosudarstvennogo Universiteta. Seriya: Geologiya 4, 1822 (in Russian).Google Scholar
Liu, AG and McIlroy, D (2015) Horizontal surface traces from the Fermeuse Formation, Ferryland (Newfoundland, Canada), and their place within the late Ediacaran ichnological revolution. In Ichnology: Publications Arising from ICHNIA III (ed McIlroy, D), pp. 141–56. St John’s: Geological Association of Canada, Miscellaneous Publications, 9.Google Scholar
Liu, AG and Tindal, BH (2020) Ediacaran macrofossils prior to the ∼580 Ma Gaskiers glaciation in Newfoundland, Canada. Lethaia 54, 260–70.CrossRefGoogle Scholar
Luo, C and Miao, L (2020) A Harodiskia-Nenoxites-dominated fossil assemblage from the Ediacaran-Cambrian transition (Liuchapo Formation, Hunan Province): its paleontological implications and stratigraphic potential. Palaeogeography, Palaeoeclimatology, Palaeoecology 545, 109635.CrossRefGoogle Scholar
MacDonald, FA, Pruss, SB and Strauss, JV (2014) Trace fossils with Spreiten from the Late Ediacaran Nama Group, Namibia: complex feeding patterns five million years before the Precambrian-Cambrian boundary. Journal of Paleontology 88, 299308.CrossRefGoogle Scholar
Martyshin, A (2012) Ediacaran fauna from the Yampil Sandstones of the Vendian of Podolia. Geolog Ukrainy 4, 97104.Google Scholar
Mastitsky, SE and Shitikov, VK (2015) Statistical Analysis and Data Visualisation using R. Moscow: DMK Press, 496 pp.Google Scholar
McIlroy, D and Brasier, MD (2016) Ichnological evidence for the Cambrian explosion in the Ediacaran to Cambrian succession of Tanafjord, Finnmark, northern Norway. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier (eds Brasier, AT, McIlroy, D & McLoughlin, N). Geological Society of London, Special Publication no. 448.Google Scholar
Mitchell, EG, Bobkov, NI, Bykova, NV, Dhungana, A, Kolesnikov, AV, Hogarth, IRP, Liu, AG, Mustill, TMR, Sozonov, N, Rogov, VI, Xiao, S and Grazhdankin, DV (2020) The influence of environmental setting on the community ecology of Ediacaran organisms. Interface Focus 10, 20190109.CrossRefGoogle ScholarPubMed
Murase, H, Nagashima, H, Yonezaki, S, Matsukura, R and Kitakado, T (2009) Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of pelagic fish and krill: a case study in Sendai Bay, Japan ICES. African Journal of Marine Sciences 66, 1417–24.Google Scholar
Nagovitsin, KE, Rogov, VI, Marusin, VV, Karlova, GA, Kolesnikov, AV, Bykova, NV and Grazhdankin, DV (2015) Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena-Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform. Precambrian Research 270, 226–45.CrossRefGoogle Scholar
Narbonne, GM, Myrow, PM, Landing, E and Anderson, MM (1987) A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, south-eastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.CrossRefGoogle Scholar
Oksaken, J, Blanchet, GF, Friendly, M, Kindt, R, Legendre, P, McGlinn, D, Minchin, PR, O’Hara, RB, Simpson, GL, Solymons, P, Stevens, MHH, Szoecs, E and Wagner, H (2020) Vegan: Community Ecology Package. Version 2.5-7. https://cran.r-project.org/web/packages/vegan/index.html.Google Scholar
Paczesna, J (1986) Upper Vendian and Lower Cambrian ichnocoenoses of Lublin Region. Biuletyn Instytutu Geologicznego 355, 3147 (in Russian).Google Scholar
Palij, VM (1976) Remains of soft-bodied animals and trace fossils from the Upper Precambrian and Lower Cambrian of Podolia. In Palaeontology and Stratigraphy of Upper Precambrian and Lower Cambrian of Southwestern East European Platform (eds Keller, BM & Rozanov, AYu), pp. 6376. Kiev: Naukova Dumka.Google Scholar
Palij, VM, Posti, E and Fedonkin, MA (1979) Soft-bodied Metazoa and animal trace fossils in the Vendian and early Cambrian. In Upper Precambrian and Cambrian Palaeontology of the East European Platform (eds Keller, BM & Rozanov, AYu), pp. 4982. Moscow: Nauka (in Russian; English translation edited by. A Urbanek and AYu Rozanov, published in 1983 by Publishing House Wydawnictwa Geologiczne, Warsaw).Google Scholar
Parcha, SK and Pandey, S (2011) Ichnofossils and their significance in the Cambrian succession of the Parahio Valley in the Spiti Basin, Tethys Himalaya, India. Journal of Asian Earth Sciences 42, 1097–116.CrossRefGoogle Scholar
Peng, Y, Dong, L, Ma, H, Wang, R, Lang, X, Peng, Y, Qin, S, Liu, W and Shen, B (2020) Surface ocean nitrate-limitation in the aftermath of Marinoan snowball Earth: evidence from the Ediacaran Doushantuo Formation in the western margin of the Yangtze Block, South China. Precambrian Research 347, 105846.CrossRefGoogle Scholar
Rogov, V, Marusin, V, Bykova, N, Goy, Y, Nagovitsin, K, Kochnev, B, Karlova, G and Grazhdankin, D (2012) The oldest evidence of bioturbation on Earth. Geology 40, 395–8.CrossRefGoogle Scholar
Rogov, V, Marusin, V, Bykova, N, Goy, Y, Nagovitsin, K, Kochnev, B, Karlova, G and Grazhdankin, D (2013a) The oldest evidence of bioturbation on Earth: REPLY. Geology 41, e290.CrossRefGoogle Scholar
Rogov, V, Marusin, V, Bykova, N, Goy, Y, Nagovitsin, K, Kochnev, B, Karlova, G and Grazhdankin, D (2013b) The oldest evidence of bioturbation on Earth: REPLY. Geology 41, e300.CrossRefGoogle Scholar
Runnegar, B (1995) Vendobionta or Metazoa? Developments in understanding the Ediacara “fauna”. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 195, 303–18.CrossRefGoogle Scholar
Seilacher, A, Buatois, L and Mangano, MG (2005) Trace fossils in the Ediacaran-Cambrian transition: behavioral diversification, ecological turnover and environmental shift. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 323–56.CrossRefGoogle Scholar
Seilacher, A, Grazhdankin, D and Legouta, A (2003) Ediacaran biota: the dawn of animal life on the shadow of giant protists. Paleontological Research 7, 4354.CrossRefGoogle Scholar
Seilacher, A and Mrinjek, E (2011) Benkovac Stone (Eocene, Croatia): a deep-sea Plattenkalk? Swiss Journal of Geosciences 104 (Supplement 1), 159–66.CrossRefGoogle Scholar
Shen, B, Xiao, S, Dong, L, Zhou, C and Liu, J (2007) Problematic macrofossils from Ediacaran successions in the North China and Chaidam Blocks: implications for their evolutionary roots and biostratigraphic significance. Journal of Paleontology 81 (6), 13961411.CrossRefGoogle Scholar
Shen, B, Xiao, S, Zhou, C, Dong, L, Chang, J and Chen, Z (2017) A new modular palaeopascichnid fossil Curviacus ediacaranus: new genus and species from the Ediacaran Dengying Formation in the Yangtze Gorges area of South China. Geological Magazine 154, 1257–68.CrossRefGoogle Scholar
Sokolov, BS (1976) Organic world of the Earth on its way to Phanerozoic differentiation. In The 250th Anniversary of the Academy of Sciences of the USSR. Documents and Records of the Celebrations (ed BS Sokolov), pp. 423–44. Moscow: Nauka.Google Scholar
Sozonov, NG, Bobkov, NI, Mitchell, EG, Kolesnikov, AV and Grazhdankin, DV (2019) The ecology of Dickinsonia on tidal flats. Estudios Geologicos 75, e116.CrossRefGoogle Scholar
Waggoner, B (2003) The Ediacaran biotas in space and time. Integrative & Comparative Biology 43, 104–13.CrossRefGoogle ScholarPubMed
Wan, B, Chen, Z, Yuan, X, Pang, K, Tang, Q, Guan, C, Wang, X, Pandey, SK, Droser, ML and Xiao, S (2020) A tale of three taphonomic modes: the Ediacaran fossil Flabellophyton preserved in limestone, black shale, and sandstone. Gondwana Research 84, 296314.CrossRefGoogle Scholar
Wan, B, Xiao, S, Yuan, X, Chen, Z, Pang, K and Tang, Q (2014) Orbisiana linearis from the early Ediacaran Lantian Formation of South China and its taphonomic and ecological implications. Precambrian Research 255, 266–75.CrossRefGoogle Scholar
Wood, SN (2006) Generalized Additive Models: An Introduction with R.Boca Raton: Chapman & Hall/CRC, 410 pp.CrossRefGoogle Scholar
Xiao, S, Chen, Z, Pang, K, Zhou, C and Yuan, X (2020) The Shibantan Lagerstätte: insights into Proterozoic-Phanerozoic transition. Journal of the Geological Society 178, 112.Google Scholar
Yang, C, Li, Y, Selby, D, Wan, B, Guan, C, Zhou, C and Li, XH (2022) Implications for Ediacaran biological evolution from the ca. 602 Ma Lantian biota in China. Geology 50, 562–6.CrossRefGoogle Scholar
Yuan, X, Chen, Z, Xiao, S, Zhou, C and Hua, H (2011) An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature 470, 390–3.CrossRefGoogle ScholarPubMed
Zhuravlev, AYu and Riding, R (2000) The Ecology of the Cambrian Radiation. New York: Columbia University Press, 536 pp.CrossRefGoogle Scholar
Zhuravlev AYu and Wood RA (2008) Eve of biomineralization: controls on skeletal mineralogy. Geology 36, 923–6.Google Scholar
Supplementary material: File

Kolesnikov and Desiatkin supplementary material

Table S1

Download Kolesnikov and Desiatkin supplementary material(File)
File 324.6 KB