Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T01:51:25.108Z Has data issue: false hasContentIssue false

Taphonomy, palaeoecological implications, and colouration of Cambrian gogiid echinoderms from Guizhou Province, China

Published online by Cambridge University Press:  21 September 2007

JIH-PAI LIN*
Affiliation:
School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA
WILLIAM I. AUSICH
Affiliation:
School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA
YUAN-LONG ZHAO
Affiliation:
College of Resource and Environment Engineering, Guizhou University, Guiyang 550003, China
JIN PENG
Affiliation:
Department of Earth Sciences, Nanjing University, Nanjing, 210093, China
*
Author for correspondence: [email protected]

Abstract

Based on rich material (381 specimens examined) from two Cambrian echinoderm faunas, the early Cambrian Balang fauna and middle Cambrian Kaili fauna in Guizhou Province, South China, the taphonomy of gogiid echinoderms is described in detail, and the preservation of stereomic microstructure and organic remains of Cambrian gogiid echinoderms is reported here for the first time. Taphonomic considerations include entombment patterns, decay sequences, individual-specific diagenetic histories, unusual burial postures, selective disarticulation patterns, and post-mortem elongation. In particular, five categories of gogiid entombment patterns are proposed to describe the multi-directional orientations recorded at the burial time of articulated gogiids. Gogiid-bearing slabs of Guizhou material primarily (70%) display the type 2 entombment pattern (articulated gogiids preserved with fan-shaped brachioles); thus, most Guizhou gogiids were buried with brachioles preserved in feeding posture during obrution events. Balang gogiid faunas contain the oldest evidence of palaeoecological interactions among echinoderms and other indigenous taxa. In addition to pre-burial and post-burial decay, other potential causes for unusual disarticulation patterns exhibited by the gogiids from the lower Cambrian Balang Formation include pre-burial bio-disturbance and post-burial bioturbation based on ichnogenera, including Rusophycus and Planolites. Chemical analyses reveal that carbon, calcium, manganese and iron are the major elements responsible for the variety of colours exhibited by Guizhou gogiids. Three-dimensional stereomic microstructure (mean stereom pore size = 8.4–8.7 μm; average trabecular thickness = 4.5–4.6μm) occurs on the external surfaces of thecal plates in two gogiid species. Stereom preservation in calcite suggests that the dissolution of calcareous echinoderm plates, yielding characteristic mouldic preservation, is sub-Recent (after lithificaiton and exposure of gogiid-bearing, marine sedimentary successions on or near the land surface).

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvaro, J. J., Vennin, Z. & Vennin, E. 1997. Episodic development of Cambrian eocrinoid-sponge meadows in the Iberian Chains (NE Spain). Facies 37, 4963.Google Scholar
Ausich, W. I. 1977. The functional morphology and evolution of Pisocrinus (Crinoidea: Silurian). Journal of Paleontology 51, 672–86.Google Scholar
Ausich, W. I. 1983. Functional morphology and feeding dynamics of the Early Mississippian crinoid Barycrinus asteriscus. Journal of Paleontology 57, 3141.Google Scholar
Ausich, W. I. 1977. The functional morphology and evolution of Pisocrinus (Crinoidea: Silurian). Journal of Paleontology 51, 672–86.Google Scholar
Ausich, W. I. 1983. Functional morphology and feeding dynamics of the Early Mississippian crinoid Barycrinus asteriscus. Journal of Paleontology 57, 3141.Google Scholar
Ausich, W. I. 2001. Echinoderm taphonomy. In Echinoderm Studies – Volume 6 (eds Jangoux, M. & Lawrence, J. M.), pp. 171227. Rotterdam: A. A. Balkema.Google Scholar
Ausich, W. I. & Babcock, L. E. 2000. Echmatocrinus, a Burgess Shale animal reconsidered. Lethaia 33, 924.Google Scholar
Ausich, W. I. & Baumiller, T. K. 1993. Taphonomic method for determining muscular articulations in fossil crinoids. Palaios 8, 477–84.CrossRefGoogle Scholar
Ausich, W. I. & Baumiller, T. K. 1998. Disarticulation patterns in Ordovician crinoids: Implications for the evolutionary history of connective tissue in the Crinoidea. Lethaia 13, 113–23.CrossRefGoogle Scholar
Baumiller, T. K. & Ausich, W. I. 1992. The ‘Broken Stick’ model as a null hypothesis for crinoid stalk taphonomy and as a guide to the distribution of connective tissue in fossil crinoids. Paleobiology 18, 288–98.Google Scholar
Berg-Madsen, V. 1986. Middle Cambrian cystoid (sensu lato) stem columnals from Bornholm, Denmark. Lethaia 19, 6780.Google Scholar
Bottjer, D. J., Hagadorn, J. W. & Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today 10, no. 9, 17.Google Scholar
Briggs, D. E. G. & Wilby, P. R. 1996. The role of the calcium carbonate–calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society, London 153, 6658.Google Scholar
Clausen, S. & Smith, A. B. 2005. Palaeoanatomy and biological affinities of a Cambrian deuterostome (Stylophora). Nature 438, 3514.CrossRefGoogle ScholarPubMed
Dickson, J. A. D. 2001. Diagenesis and crystal caskets: Echinoderm Mg calcite transformation, Dry Canyon, New Mexico, U.S.A. Journal of Sedimentary Research 71, 764–77.CrossRefGoogle Scholar
Donovan, S. K. 1991. The taphonomy of echinoderms: Calcareous multi-element skeletons in the marine environment. In The Process of Fossilization (ed. Donovan, S. K.), pp. 241–69. London: Belhaven Press.Google Scholar
Dornbos, S. Q. & Bottjer, D. J. 2000. Evolutionary paleoecology of the earliest echinoderms: helicoplacoids and the Cambrian substrate revolution. Geology 28, 839–42.2.0.CO;2>CrossRefGoogle Scholar
Dornbos, S. Q. & Bottjer, D. J. 2001. Taphonomy and environmental distribution of helicoplacoid echinoderms. Palaios 16, 197204.2.0.CO;2>CrossRefGoogle Scholar
Durham, J. W. 1978. A Lower Cambrian eocrinoid. Journal of Paleontology 52, 1959.Google Scholar
Gabbott, S. E., Hou, X.-G., Norry, M. J. & Siveter, D. J. 2004. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 9014.Google Scholar
Gahn, F. J. & Baumiller, T. K. 2004. A bootstrap analysis for comparative taphonomy applied to Early Mississippian (Kinderhookian) crinoids from the Wassonville Cycle of Iowa. Palaios 19, 1738.2.0.CO;2>CrossRefGoogle Scholar
Gaines, R. R., Kennedy, M. J. & Droser, M. L. 2005. A new hypothesis for organic preservation of Burgess Shale taxa in the middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 193205.CrossRefGoogle Scholar
Gil Cid, M. D. & Domínguez Alonso, P. 1999. Diversity of Lower–Middle Cambrian echinoderms and carpoids from Spain. Coloquios de Paleontología 50, 107–18.Google Scholar
Gil Cid, M. D. & Domínguez Alonso, P. 2002. Ubaghsicystis segurae nov. gen. and sp., a new Eocrinoid (Echinodermata) of Middle Cambrian from northern Spain. Coloquios de Paleontología 53, 2132.Google Scholar
Glass, A. 2006. Pyritized tube feet in a protasterid ophiuroid from the Upper Ordovician of Kentucky, U.S.A. Acta Palaeontologica Polonica 51, 171–84.Google Scholar
Guensburg, T. E. & Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: Significance of paleoenvironmental controls. Geology 20, 407–10.Google Scholar
Gunther, L. F. & Gunther, V. G. 1981. Some Middle Cambrian fossils of Utah. Brigham Young University Geology Studies 28, 181.Google Scholar
Guo, Q.-J., Strauss, H., Liu, C.-Q., Zhao, Y.-L., Pi, D.-H., Fu, P.-Q., Zhu, L.-J. & Yang, R.-D. 2005. Carbon and oxygen isotopic composition of Lower to Middle Cambrian sediments at Taijiang, Guizhou Province, China. Geological Magazine 142, 723–33.Google Scholar
Han, N.-R., Tang, L., Wei, R.-S. & Wang, G.-B. 2000. Stratigraphy of Upper Cambrian from Guole, Jingxi, Guangxi. Journal of Guilin Institute of Technology 20, 3505 (in Chinese with English abstract).Google Scholar
Hu, S.-X., Luo, H.-L., Hou, S.-G. & Erdtmann, B.-D. 2006. Eocrinoid echinoderms from the Lower Cambrian Guanshan Fauna in Wuding, Yunnan, China. Chinese Science Bulletin 51, 13668 (in Chinese).Google Scholar
Huang, Y.-Z., Zhao, Y.-L. & Gong, X.-Y. 1985. Discovery of Echinodermata from Middle Cambrian Kaili Formation in Taijiang of Guizhou. Journal of Guizhou Institute of Technology 14, no. 4, 123 (in Chinese with translated title).Google Scholar
Lane, N. G. & Sevastopulo, G. D. 1981. Functional morphology of a microcrinoid: Kallimorphocrinus punctatus n. sp. Journal of Paleontology 55, 1328.Google Scholar
Lane, N. G. & Sevastopulo, G. D. 1982. Microcrinoids from the middle Pennsylvanian of Indiana. Journal of Paleontology 56, 103–15.Google Scholar
Lapham, K. E., Ausich, W. I. & Lane, N. G. 1976. A technique for developing the stereom of fossil crinoid ossicles. Journal of Paleontology 50, 2458.Google Scholar
Lin, J.-P. 2006. Taphonomy of naraoiids (Arthropoda) from the Middle Cambrian Kaili Biota, Guizhou Province, South China. Palaios 21, 1525.CrossRefGoogle Scholar
Lin, J.-P., Ausich, W. I. & Zhao, Y.-L. In press. Settling strategy of eocrinoids from the Kaili Biota (middle Cambrian), Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Lin, J.-P., Gon, S. M. III, Gehling, J. G., Zhao, Y.-L., Zhang, X.-L., Hu, S.-X., Yuan, J.-L., Yu, M.-Y. & Peng, J. 2006. A Parvancorina-like arthropod from Cambrian strata of South China. Historical Biology 18, 3345.Google Scholar
Lin, J.-P., Yuan, J.-L., Wang, Y. & Zhao, Y.-L. 2005. Introduction to the type section of the Kaili Formation, Danzhai, Guizhou Province, China. In Cambrian System of China and Korea – Guide to Field Excursions (eds Peng, S.-C., Babcock, L. E. & Zhu, M.-Y.), pp. 5561. Hefei: University of Science and Technology of China Press.Google Scholar
Macurda, D. B. Jr & Meyer, D. L. 1975. The microstructure of the crinoid endoskeleton. The University of Kansas Paleontological Contributions Paper 74, 122, 30 pls.Google Scholar
Maples, C. G. & Archer, A. W. 1989. Paleoecological and sedimentological significance of bioturbated crinoid calyces. Palaios 4, 379–83.CrossRefGoogle Scholar
McNamara, K. J., Feng, Y. & Zhou, Z.-Y. 2006. Ontogeny and heterochrony in the Early Cambrian oryctocephalid trilobites Changaspis, Duyunaspis and Balangia from China. Palaeontology 49, 119.CrossRefGoogle Scholar
Meyer, D. L. & Milson, C. V. 2001. Microbial sealing in the biostratinomy of Uintacrinus Lagerstätten in the Upper Cretaceous of Kansas and Colorado, USA. Palaios 16, 535–46.Google Scholar
Meyer, D. L., Milson, C. V. & Webber, A. J. 1999. Uintacrinus: A riddle wrapped in an enigma. Geotime 44, no. 8, 1416.Google Scholar
Oji, T. & Amemiya, S. 1998. Survival of crinoid stalk fragments and its taphonomic implications. Paleontological Research 2, 6770.Google Scholar
Parsley, R. L. & Prokop, R. J. 2004. Functional morphology and paleoecology of some sessile Middle Cambrian echinoderms from the Barrandian region of Bohemia. Czech Geological Survey Bulletin of Geosciences 79, 147–56.Google Scholar
Parsley, R. L. & Zhao, Y.-L. 2004. Functional morphology of brachioles in gogiid and other Early and Middle Cambrian eocrinoids. In Echinoderms: München (eds Heinzeller, T. & Nebelsick, J. H.), pp. 479–84. Leiden: A. A. Balkema.CrossRefGoogle Scholar
Parsley, R. L. & Zhao, Y.-L. 2006. Long stalked eocrinoids in the basal Middle Cambrian Kaili Biota, Taijiang County, Guizhou Province, China. Journal of Paleontology 80, 105871.Google Scholar
Parsley, R. L., Zhao, Y.-L. & Peng, J. 2005. Systematics, ontogeny, and functional morphology of gogiid eocrinoids in the Kaili Biota: (Middle Cambrian; Echinodermata). Acta Micropalaeontologica Sinica 22 (Supp.), 1412.Google Scholar
Peng, J., Zhao, Y.-L., Wu, Y.-S., Yuan, J.-L. & Tai, T.-S. 2005 a. The Balang Fauna – a new early Cambrian fauna from Kaili City, Guizhou Province. Chinese Science Bulletin 50, 14.Google Scholar
Peng, J., Zhao, Y.-L., Yuan, J.-L., Wang, Y. & Wu, Y.-S. 2005 b. The Early Cambrian Balang Fauna from Kaili City, South China. Acta Micropalaeontologica Sinica, 22 (Supp.), 147.Google Scholar
Post, J. E. 1999. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of the United States of America 96, 344754.CrossRefGoogle ScholarPubMed
Robison, R. A. 1965. Middle Cambrian eocrinoids from western North America. Journal of Paleontology 39, 355–64.Google Scholar
Riddle, S. W., Wulff, J. I. & Ausich, W. I. 1988. Biomechanics and stereomic microstructure of the Gilbertsocrinus tuberosus column. In Echinoderm Biology – Proceedings of the Sixth International Echinoderm Conference Victoria/23–28 August 1987 (eds Burke, R. D., Mladenov, P. V., Lambert, P. & Parsley, R. L.), pp. 6418. Rotterdam: A. A. Balkema.Google Scholar
Roux, M. 1975. Microstructural analysis of the crinoid stem. The University of Kansas Paleontological Contributions Paper 75, 17, 2 pls.Google Scholar
Sevastopulo, G. D. & Keegan, J. B. 1980. A technique for revealing the stereom microstructure of fossil crinoids. Palaeontology 23, 749–56.Google Scholar
Skinner, E. S. 2005. Taphonomy of exceptionally preserved fossils from the Kinzers Formation (Cambrian), southeastern Pennsylvania. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 167–92.Google Scholar
Skovsted, C. B. 2006. Small shelly fossils from the basal Emigrant Formation (Cambrian, uppermost Dyeran Stage) of Split Mountain, Nevada. Canadian Journal of Earth Sciences 43, 487–96.Google Scholar
Smith, A. B. 1982. The affinities of the Middle Cambrian Haplozoa (Echinodermata). Alcheringa 6, 939.Google Scholar
Smith, A. B. 1990. Biomineralization in echinoderms. In Skeletal Biomineralization: Patterns, Processes, and Evolutionary Trends (ed. Carter, J. G.), pp. 413–43, pls 1705. New York: Van Nostrand Reinhold.Google Scholar
Sohn, I. G. 1956. The transformation of opaque calcium carbonate to translucent calcium fluoride in fossil Ostracoda. Journal of Paleontology 30, 113–14.Google Scholar
Springer, F. 1901. Uintacrinus, its structure and relations. Harvard College Museum of Comparative Zoology Memoir 25, 189.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Cambridge: The Museum of Comparative Zoology, Harvard University, 284 pp.Google Scholar
Sprinkle, J. 1976. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Brigham Young University Geology Studies 23 (2), 6173.Google Scholar
Sprinkle, J. & Collins, D. 2006. New eocrinoids from the Burgess Shale, southern British Columbia, Canada, and the Spence Shale, northern Utah, USA. Canadian Journal of Earth Sciences 43, 303–22.Google Scholar
Sprinkle, J. & Guensburg, T. E. 1995. Origin of echinoderms in the Paleozoic Evolutionary Fauna: The role of substrates. Palaios 10, 437–53.Google Scholar
Sprinkle, J. & Gutschick, R. C. 1967. Costatoblastus, a channel fill blastoid from the Sappington Formation of Montana. Journal of Paleontology 41, 385402.Google Scholar
Sundberg, F. A., Yuan, J.-L., McCollum, L. B. & Zhao, Y.-L. 1999. Correlation of the Lower–Middle Cambrian boundary of South China and western United States of America. Acta Palaeontolgica Sinica 38 (Supp.), 1027.Google Scholar
Ubaghs, G. 1967 a. Eocrinoidea. In Treatise on Invertebrate Paleontology, Part S, Echinodermata 1, vol. 2 (ed. Moore, R. C.), pp. 455–95. Boulder and Lawrence: Geological Society of America and University of Kansas.Google Scholar
Ubaghs, G. 1967 b. Cymbionites and Peridionites – unclassified Middle Cambrian echinoderms. In Treatise on Invertebrate Paleontology, Part S, Echinodermata 1, vol. 2 (ed. Moore, R. C.), pp. 6347. Boulder and Lawrence: Geological Society of America and University of Kansas.Google Scholar
Ubaghs, G. & Robison, R. A. 1985. A new homoiostelean and a new eocrinoid from the Middle Cambrian of Utah. The University of Kansas Paleontological Contributions, Paper 115, 124.Google Scholar
Ubaghs, G. & Vizcaïno, D. 1990. A new eocrinoid from the Lower Cambrian of Spain. Palaeontology 33, 249–56.Google Scholar
Walcott, C. D. 1917. Cambrian geology and paleontology IV. Fauna of the Mount Whyte Formation. Smithsonian Miscellaneous Collection 67, 61114, pls 8–13.Google Scholar
Wang, Y., Zhao, Y.-L., Lin, J.-P. & Wang, P.-L. 2004. Relationship between trace fossil Gordia and medusiform fossils Pararotadiscus from the Kaili Biota, Taijiang, Guizhou, and its significance. Geological Review 50, 113–19, 2 pls (in Chinese with English abstract).Google Scholar
Wang, Y., Zhou, Z.-C., Zhao, Y.-L. & Yu, M.-Y. 2006. Relationship between ichnocoenosis and sedimentary environment in the Lower–Middle Cambrian Kaili Formation of Taijiang, Guizhou, China. Acta Palaeontologica Sinica 45, 243–51.Google Scholar
Whitehouse, F. W. 1941. The Cambrian Faunas of north-eastern Australia. Part 4: Early Cambrian echinoderms similar to the larval stages of recent forms. Memoirs of the Queensland Museum 12, 128, 4 pls.Google Scholar
Wilbur, B. C. 2005 a. E Pluribus Duo: Nine helicoplacoid species reduced to two. Acta Microplaeontologica Sinica 22 (Supp.), 1989.Google Scholar
Wilbur, B. C. 2005 b. Paleontological topiary: The North American Early Cambrian echinoderm tree and implications for competitive exclusion during the “Cambrian explosion.” Geological Society of America Abstracts with Programs 37, no. 7, 306.Google Scholar
Wilbur, B. C. 2006. Reduction in the number of Early Cambrian helicoplacoid species. Palaeoworld 15, 283–93.Google Scholar
Xue, Y.-S., Tang, T.-F. & Yu, C.-L. 1992. Discovery of oldest skeletal fossils from Upper Sinian Doushantuo Formation in Weng'An, Guizhou, and its significance. Acta Palaeontologica Sinica 31, 5309, 2 pls (in Chinese with English abstract).Google Scholar
Yang, R.-D. & Zhao, Y.-L. 1999. Discovery on trace fossils from the Early–Middle Cambrian Kaili Formation of Taijiang, Guizhou. Acta Palaeontologica Sinica 38 (Supp.), 5865 (in Chinese with English abstract).Google Scholar
Yang, S.-P. 1994. Trace fossils from Early–Middle Cambrian Kaili Formation in Taijiang, Guizhou. Acta Palaeontologica Sinica 33, 3508 (in Chinese with English abstract).Google Scholar
Yuan, J.-L., Zhao, Y.-L., Li, Y. & Huang, Y.-Z. 2002. Trilobite Fauna of the Kaili Formation (Uppermost Lower Cambrian – Lower Middle Cambrian) from Southeastern Guizhou, South China. Shanghai: Shanghai Science and Technology Press, 423 pp. (in Chinese with English abstract).Google Scholar
Zhang, S.-P. & Jiang, N. 1983. Sponge spicules from the Tsinghsutung Formation (Lower Cambrian), Yutang, Huayuan County. Hunan Geology 2, 649, 1 pl. (in Chinese).Google Scholar
Zhao, Y.-L., Huang, Y.-Z. & Gong, X.-Y. 1994. Echinoderm fossils of Kaili Fauna from Taijiang, Guizhou. Acta Palaeontologica Sinica 33, 305–24 (in Chinese with English abstract).Google Scholar
Zhao, Y.-L., Yuan, J.-L., Mccollum, L. B., Sundberg, F. A., Yang, R.-D., Guo, Q.-J., Zhu, L.-J. & Yang, X.-L. 2001. A potential GSSP for the Lower and Middle Cambrian boundary near Balang village, Taijiang county, Guizhou Province, China. Acta Palaeontological Sinica 40, 130–42.Google Scholar
Zhao, Y.-L., Yang, R.-D., Zhu, M.-Y., Yuan, J.-L. & Peng, J. 2002. Middle Cambrian Kaili Biota. In Guizhou – Palaeontological Kingdom (ed. Zhao, Y.-L.), pp. 110–59. Guiyang: Guizhou Science and Technology Press (in Chinese).Google Scholar
Zhao, Y.-L., Yuan, J.-L., Zhu, M.-Y., Yang, R.-D., Guo, Q.-J., Qian, Y., Huang, Y.-Z. & Pan, Y. 1999. A progress report on research on the early Middle Cambrian Kaili Biota, Guizhou, PRC. Acta Palaeontologica Sinica 38 (Supp.), 114 (in Chinese with English abstract).Google Scholar
Zhu, M.-Y., Erdtmann, B.-D. & Zhao, Y.-L. 1999. Taphonomy and paleoecology of the early Middle Cambrian Kaili Lagerstätte in Guizhou, China. Acta Palaeontologica Sinica 38 (Supp.), 2857 (in Chinese with English abstract).Google Scholar