Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T06:35:20.987Z Has data issue: false hasContentIssue false

Syn-depositional deformation in a Cretaceous succession, James Ross Island, Antarctica. Evidence from vitrinite reflectivity

Published online by Cambridge University Press:  01 May 2009

A. G. Whitham
Affiliation:
British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, U.K.
J. E. A. Marshall
Affiliation:
Department of Geology, University of Southampton, Southampton SO9 5NH, U.K.

Abstract

A detailed vitrinite reflectivity study has been made through the Cretaceous sedimentary rocks of northwest James Ross Island, Antarctica. The results show that a progressive increase in reflectivity does not occur with depth and that values (0.45 %) from the base of the succession are lower than expected for the sequence as described by previous authors. Using a synthesis of sedimentological and stratigraphic information, the sequence is reinterpreted as an apparent monoclinal syncline, strongly influenced by syndepositional tectonics, with a thickness appreciably less than previously described.

Type
Articles
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Davis, A. 1978. The reflectance of coal. In Analytical methods for coal and coal products (ed. Karr, C.), pp. 2781. London, New York: Academic Press.CrossRefGoogle Scholar
Dettmann, M. E. & Thomson, M. R. A. 1987. Cretaceous palynomorphs from the James Ross Island area, Antarctica–A pilot study. British Antarctic Survey Bulletin 77, 1359.Google Scholar
Durand, B., Alpern, B., Pittion, J. L. & Pradier, B. 1986. Reflectance of vitrinite as a control of thermal history of sediments. In Thermal modelling in sedimentary basins (ed. Burrus, J.), Collection Colloques et Séminaires 44, pp. 441–74. Paris: Editions Technip.Google Scholar
Farquharson, G. W., Hamer, R. D. & Ineson, J. R. 1984. Proximal volcaniclastic sedimentation in a Cretaceous back-arc basin, northern Antarctic Peninsula. In Marginal Basin Geology (ed. Kokelaar, B. P. and Howells, M. F.), Geological Society Special Publication, No. 16, pp. 219–29. Oxford, London, Boston: Blackwell Scientific Publications.Google Scholar
Fisher, M. J., Barnard, P. C. & Cooper, B. S. 1980. Organic maturation and hydrocarbon generation in the Mesozoic sediments of the Sverdrup Basin, Arctic Canada. IV International Palynological Conference, Lucknow (1976–1977) 2, 581–8.Google Scholar
Fleming, R. F. & Askin, R. A. 1982, Early Tertiary coal bed on Seymour Island, Antarctic Peninsula. Antarctic Journal of the U.S. 17,67.Google Scholar
Fournier, H., Keller, M., Demichelli, J. & Irigoin, H. 1980. Prospeccion magnetellurica en la Isla Vice-commodoro Marambio, Antartida: Contribuciones Cientificas del Instituto Antartico Argentina 235, 3746.Google Scholar
Goff, J. C. 1983. Hydrocarbon generation and migration from Jurassic source rocks in the East Shetland Basin and Viking Graben of the northern North Sea. Journal Geological Society London 140, 445–74.CrossRefGoogle Scholar
Ineson, J. R. 1985. Submarine glide blocks from the Lower Cretaceous of the Antarctic Peninsula. Sedimentology 32, 659–70.CrossRefGoogle Scholar
Ineson, J. R., Crame, J. A. & Thomson, M. R. A. 1986. Lithostratigraphy of the Cretaceous strata of west James Ross Island, Antarctica. Cretaceous Research 7, 141–59.CrossRefGoogle Scholar
Langseth, M. G. & von Herzen, R. P. 1970. Heat flow through the floor of the worlds oceans. In The Sea Vol IV (ed. Maxwell, A. E.), pp. 299352. New York: Wiley Intoscience.Google Scholar
MacDonald, D. I. M., Barker, P. F., Garrett, S. W., Ineson, J. R., Pirrie, D., Storey, B. C., Whitham, A. G., Kinghorn, R. R. F. & Marshall, J. E. A. 1988. A preliminary assessment of the hydrocarbon potential of the Larsen Basin, Antarctica. Marine and Petroleum Geology 5, 3453.CrossRefGoogle Scholar
Murchison, D. G., Cook, A. C. & Raymond, A. C. 1985. Optical properties of organic matter in relation to thermal gradients and structural deformation. Philosophical Transactions of the Royal Society, London A315, 157–86.Google Scholar
Nelson, P. H. H. 1975. The James Ross Island Volcanic Group of north-east Graham Land. British Antarctic Survey Scientific Reports 54, 62 pp.Google Scholar
Nichols, G. J. 1987. Syntectonic alluvial fan sedimentation, southern Pyrenees. Geological Magazine 124, 121–33.CrossRefGoogle Scholar
Olivero, E., Scasso, R. A. & Rinaldi, C. A. 1986. Revision of the Marambio Group, James Ross Island, Antarctica. Instituto Antartico Argentina, Contribution 331, 128.Google Scholar
Pearson, D. E. & Grieve, D. A. 1985. Geology and rank distribution of the Elk Valley Coalfield. In Geology in British Columbia 1977–1981, 1724.Google Scholar
Pearson, D. L. 1982. Approaching a spore/pollen color standard. Palynology 6, 289.Google Scholar
Pearson, D. L. 1984. Pollen/spore color “standard”. Phillips Petroleum Company Exploration Projects Section.Google Scholar
Phipps, D. & Playford, G. 1984. Laboratory techniques for the extraction of palynomorphs from sediments. Papers Department of Geology, University of Queensland 11, 123.Google Scholar
Price, L. C. & Barker, C. E. 1985. Supression of vitrinite reflectance in amorphous rich kerogen, a major unrecognized problem. Journal of Petroleum Geology 8, 5984.CrossRefGoogle Scholar
Robert, P. 1988. Organic metamorphism and geothermal history. English edition. Holland: Reidel. 311 pp.Google Scholar
Rodrigues, K. 1980. A geochemical evaluation of the sediments encountered in the Content 1 Well, western Jamaica. Transactions Caribbean Geological Conference 9, 1, 325–32.Google Scholar
Smith, G. C. & Cook, A. C. 1980. Coalification paths of exinite, vitrinite and inertinite. Fuel 59, 641–6.CrossRefGoogle Scholar
Stach, E., Mackowsky, M.-Th., Teichmuller, M., Teichmuller, R., Taylor, G. H. & Chandra, D. 1982. Coal Petrology, 3rd Edition. Berlin, Stuttgart: Getruder Borntraeger, 535 pp.Google Scholar
Teichmuller, M. R. 1979. Diagenesis of coal (coalification). Diagenesis in sediments and sedimentary rocks. Developments in sedimentology 25A. (ed. Larsen, G. and Chilingar, G. V.), pp. 207–46. London, New York: Elsevier.Google Scholar
Yasui, M., Kishii, T., Watanabe, T. & Uyeda, S. 1968. Heat flow in the Sea of Japan. In The Crust and upper Mantle of the Pacific Area (eds. Knopoff, L., Drake, C. L. and Hart, P. J.). American Geophysical Union, International Upper Mantle Project, Scientific Report 15, 316.Google Scholar
Zinsmeister, W. J. 1982. Review of the Upper Cretaceous–Lower Tertiary sequence of Seymour Island, Antarctica. Journal of the Geological Society 139, 779–86.CrossRefGoogle Scholar