Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T23:44:43.624Z Has data issue: false hasContentIssue false

Surface roughness measurements and the analysis of petrofabrics

Published online by Cambridge University Press:  01 May 2009

J. C. Deelman
Affiliation:
Tortugas Ecosystems, P.O. Box 8567, Eindhoven, The Netherlands

Summary

A technique is described for direct analysis of rock-fabric, utilising hardness differences between various mineral constituents. This renders unnecessary the intermediate step of measuring optical orientations. The direct relation that exists between hardness of the components making up a particular fabric and the start of plastic deformation of each mineral can be measured quantitatively on the basis of polishing hardness differences. If the surface roughness signal is digitalised, then it is possible to automatically construct a microtopography, with contours delineating resistance of individual minerals.

Type
Articles
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auerbach, F. 1894. Ueber die Härte- und Elastizitätsverhältnisse des Glases. Ann. Phys. Chemie, 53, 1000–38.CrossRefGoogle Scholar
Brewster, D. 1830. On the production of regular double refraction in the molecules of bodies by simple pressure; with observations on the origin of double refracting structure. Phil. Trans. R. Soc. Lond. pp. 8795.Google Scholar
Deelman, J. C. 1972. Automatic grain size analysis by means of electro-magnetic surface measurements. J. sedim. Petrol. 42, 732–5.CrossRefGoogle Scholar
Deelman, J. C. 1975. An experimental approach to lithification textures. Nature, Lond. 257, 782–3.CrossRefGoogle Scholar
Deelman, J. C. & Deelman, G. J. 1975. Textural analysis of sediments by means of surface roughness measurements. Neues Jb. Geol. Paläont. Mh. 2, 6581.Google Scholar
Deutsche Industrie Norm 52 108. 1968. Verschleissprüfung mit der Schleifscheibe nach Böhme. Beuth Verlag, Berlin.Google Scholar
Fairbairn, H. W. 1949. Structural Petrology of Deformed Rocks. Cambridge, Mass.: Addison-Wesley.Google Scholar
Groth, P. 1905. Physikalische Krystallographie (4. Auflage). Leipzig: Engelmann.Google Scholar
Mohs, F. 1822. Grundriss der Mineralogie. I. Theil. Terminologie, Systematik, Nomenklatur, Charakteristik. Dresden: Arnoldischen Buchhandlung.Google Scholar
Mott, B. W. 1956. Micro-indentation Hardness Testing. London: Butterworth.Google Scholar
Nitikin, W. W. 1914. La Méthode universelle de Fedoroff. Genève: Edition Atar.Google Scholar
Rank Precision Industries. 1944. Report on the Measurement of Surface Finish by Stylus Method. Rank Precision Industries, Taylor-Hobson Div., Leicester.Google Scholar
Sander, B. 1930. Gefügekunde der Gesteine, mit besondere Berücksichtigung der Tektonite. Wien: Springer.CrossRefGoogle Scholar
Schmidt, W. 1932. Tektonik und Verformungslehre. Berlin: Borntraeger.CrossRefGoogle Scholar
Schulz, H. 1942. Schleifhärtebestimmungen für Glas. Glastech. Ber. 20, 23.Google Scholar
Sitter, L. U. de. 1964. Structural geology. McGraw-Hill, New York. (2nd ed.).Google Scholar
Tabor, D. 1957. Mohs' hardness scale – A physical interpretation. Proc. phys. Soc. (London), B 67, 249–57.CrossRefGoogle Scholar
Voight, W. 1910. Lehrbuch der Kristallphysik. Teubner, Leipzig.Google Scholar
Williams, S. R. 1942. Hardness and hardness measurements. Am. Soc. of Metals, Cleveland (Ohio).Google Scholar