Published online by Cambridge University Press: 01 May 2009
The Bedded Series of the Mona Complex at Rhoscolyn comprises two groups of clastic metasediments: the Holy Island Group, consistingof quartzites, impure psammites and pelites, with well-preserved bedding, is overlain conformably by the New Harbour Group, which is for the most parthomogeneously semi-pelitic without surviving bedding. Both groups have undergone the same two major tectono-metamorphic episodes, but with differing response. In the Holy Island Group the first episode (Dx) produced nearly upright and upward-facing folds (Fx) with an axial planar foliation (Sx), which varies from an anastomosing or rough-spaced cleavage in quartzites to a penetrative phyllitic schistosity in pelites. In the New Harbour Group Dx has generally obliterated original bedding surfaces, replacing them with a composite foliation (Sx) of fine compositional banding and a penetrative schistosity, together with a stretching lineation (Lx), the latter being at a high angle to the Fx axial direction. The Dx structures are attributed to a major episode of compressional tectonics.
The structures attributed to the second deformation (Dy) includestrata-bound sets of quartz-filled tension fractures (attributed by most previous authors to an earlier episode), abundant NNW-verging asymmetric folds (Fy) of Sx, and a sporadically developed set of shear fractures which constitute a crenulation cleavage (Sy) axial planar to the folds. It is suggested that all these structures were produced by a single agency. One interpretation is that the observed shear fractures and folded tension fractures correspond fairly closely to and provide a natural analogy of those obtained in the classical simple shear experimentsof Riedel. In this case all the Dy structures can be accounted for by the action of a large-scale simple shear couple (Cy), whose vergence and shallow dip were both towards the NNW. Such a mechanism may imply a gravity-dominated regime of net horizontal extension in a NNW-SSE direction, with extension being less constrained to the north than to the south. J. W. Cosgrove has suggested an alternative interpretation, that all the Dy structures can be explained as reverse kink bands; the simple shear interpretation is here preferred because the angle between Sy and the estimated direction of Pmax during Dy was < 45°; the kink band model would require an angle > 45°.
The fact that cleavage vergence boundaries for both Sx and Sy occur close to the hinge zone of the Rhoscolyn Antiform is consistent with either Dx or Dy age for the initiation of this fold. However, when fold limb length (or limb rotation) vergence is considered, the presence of an Fx0 vergence boundary but absence of an Fxy vergence boundary (and by implication of an Fy0 boundary) is consistent with a Dx age but difficult to reconcile with a Dy age.