Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T17:30:49.090Z Has data issue: false hasContentIssue false

Style and intensity of late Cenozoic deformation in the Nagoorin Basin (eastern Queensland, Australia) and implications for the pattern of strain in an intraplate setting

Published online by Cambridge University Press:  14 January 2018

ABBAS BABAAHMADI*
Affiliation:
School of Earth and Environmental Sciences, the University of Queensland, Brisbane, QLD 4072, Australia
GIDEON ROSENBAUM
Affiliation:
School of Earth and Environmental Sciences, the University of Queensland, Brisbane, QLD 4072, Australia
RENATE SLIWA
Affiliation:
School of Earth and Environmental Sciences, the University of Queensland, Brisbane, QLD 4072, Australia
JOAN ESTERLE
Affiliation:
School of Earth and Environmental Sciences, the University of Queensland, Brisbane, QLD 4072, Australia
MOJTABA RAJABI
Affiliation:
Australian School of Petroleum, University of Adelaide, SA 5005, Australia
*
Author for correspondence: [email protected]

Abstract

Eastern Australia was affected by late Cenozoic intraplate deformation in response to far-field stress transmitted from the plate boundaries, but little is known about the intensity and pattern of this deformation. We used recently surveyed two-dimensional seismic reflection lines and aeromagnetic data, and data from the recently released Australian Stress Map, to investigate the structure of the Nagoorin Basin in eastern Queensland. The western margin of the Nagoorin beds was displaced by the Boynedale Fault, which is a NNW-striking SW-dipping oblique strike-slip reverse fault with a vertical throw of c. 900 m and c. 16 km sinistral displacement. A significant part of this large sinistral displacement is interpreted to have occurred prior to late Cenozoic time. Several low-angle (<30°) thin-skinned thrusts with a flat-ramp geometry also displaced the Nagoorin beds, which are interpreted to have developed along detachment surfaces in oil shales and claystone. The Boynedale Fault is a segment within longer NNW-striking faults that include the North Pine and West Ipswich fault systems in eastern Queensland. These NNW-striking faults are potentially active, and may accommodate neotectonic thrust movement in response to the present-day NE–SW orientation of SHmax. Results of this study, in conjunction with previous information on sedimentary basins in eastern Australia, indicate that Cenozoic contractional deformation is stronger at the continental margins, possibly due to the presence of pre-existing rift-related structures.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amante, C. & Eakins, B. W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC, National Geophysical Data Center-24, NOAA. doi:10.7289/V5C8276M.Google Scholar
Babaahmadi, A. & Rosenbaum, G. 2014 a. Late Mesozoic and Cenozoic wrench tectonics in eastern Australia: insights from the North Pine Fault System (southeast Queensland). Journal of Geodynamics 73, 8399.Google Scholar
Babaahmadi, A. & Rosenbaum, G. 2014 b. Late Cenozoic intraplate faulting in eastern Australia. Journal of Structural Geology 69, 5974.Google Scholar
Babaahmadi, A., Rosenbaum, G. & Esterle, J. 2015. Alternating episodes of extension and contraction during the Triassic: Evidence from Mesozoic sedimentary basins in eastern Australia. Australian Journal of Earth Sciences 62, 563–79.Google Scholar
Babaahmadi, A., Sliwa, R. & Esterle, J. 2016. Post Jurassic shortening in the western Surat Basin relative to underlying basement depth and faulting. The APPEA Journal 56, 597, doi: 10.1071/AJ15103.Google Scholar
Babaahmadi, A., Sliwa, R., Esterle, J. & Rosenbaum, G. 2017 a. The development of a Triassic fold-thrust belt in a synclinal depositional system, Bowen Basin (eastern Australia). Tectonics 36, 5177.Google Scholar
Babaahmadi, A., Sliwa, R., Esterle, J. & Rosenbaum, G. 2017 b. The evolution of a Late Cretaceous–Cenozoic intraplate basin (Duaringa Basin), eastern Australia: evidence for the negative inversion of a pre-existing fold–thrust belt. International Journal of Earth Sciences. doi: 10.1007/s00531-017-1577-3Google Scholar
Bracène, R. & Frizon de Lamotte, D. 2002. The origin of intraplate deformation in the Atlas system of western and central Algeria: from Jurassic rifting to Cenozoic–Quaternary inversion. Tectonophysics 357, 207–26.Google Scholar
Clarke, D. E., Paine, A. G. L. & Jensen, A. R. 1971. Geology of the Proserpine 1:250,000 Sheet area, Queensland. Bureau of Mineral Resources, Geology & Geophysics, Report 144, 1968/022.Google Scholar
Cloetingh, S., Beekman, F., Ziegler, P. A., van Wees, J.-D. & Sokoutis, D. 2008. Post-rift compressional reactivation potential of passive margins and extensional basins. In The Nature and Origin of Comrpession in Passive Margins (eds Johnson, H., Doré, T. G., Gatliff, R. W., Holdsworth, R. W., Lundin, E. R. & Ritchie, J. D.), pp. 2770. Geological Society of London, Special Publication no. 306.Google Scholar
Coblentz, D. D., Sandiford, M., Richardson, R. M., Zhou, S. & Hillis, R. 1995. The origins of the intraplate stress field in continental Australia. Earth and Planetary Science Letters 133, 299309.Google Scholar
Cohen, B. E., Vasconcelos, P. M. D. & Knesel, K. M. 2007. 40Ar/39Ar constraints on the timing of Oligocene intraplate volcanism in southeast Queensland. Australian Journal of Earth Sciences 54, 105–25.Google Scholar
Colwell, J. B., Hashimoto, T., Rollet, N., Higgins, K., Bernardel, G. & McGiveron, S. 2010. Interpretation of Seismic Data, Capel and Faust Basins, Australia's Remote Offshore Eastern Frontier. Geoscience Australia Record, 2010/06.Google Scholar
Cook, A. G. & Jell, A. P. 2013. Paleogene and Neogene (Chapter 8). In Geology of Queensland (ed. Jell, P. A.), pp. 577652. Brisbane, Australia: Geological Survey of Queensland.Google Scholar
Day, R. W., Murray, C. G. & Whitaker, W. G. 1978. The eastern part of the Tasman Orogenic Zone. Tectonophysics 48, 327–64.Google Scholar
Dickinson, J. A., Wallace, M. W., Holdgate, G. R., Daniels, J., Gallagher, S. J. & Thomas, L. 2001. Neogene tectonics in SE Australia: implications for petroleum systems. APPEA Journal 41, 3752.Google Scholar
Dore, A. G. & Lundin, E. R. 1996. Cenozoic compressional structures on the NE Atlantic margin; nature, origin and potential significance for hydrocarbon exploration. Petroleum Geoscience 2, 299311.Google Scholar
Dyksterhuis, S., Müller, R. D. & Albert, R. A. 2005. Paleostress field evolution of the Australian continent since the Eocene. Journal of Geophysical Research: Solid Earth (1978–2012) 110, doi: 10.1029/2003JB002728.Google Scholar
Ellis, P. L. & Whitaker, W. G. 1976. Geology of the Bundaberg 1:250,000 sheet area. Queensland Department of Mines, Geological Survey of Queensland.Google Scholar
Etheridge, M., McQueen, H. & Lambeck, K. 1991. The role of intraplate stress in Tertiary (and Mesozoic) deformation of the Australian continent and its margins: a key factor in petroleum trap formation. Exploration Geophysics 22, 123–8.Google Scholar
Faccenna, C., Nalpas, T., Brun, J.-P., Davy, P. & Bosi, V. 1995. The influence of pre-existing thrust faults on normal fault geometry in nature and in experiments. Journal of Structural Geology 17, 1139–49.Google Scholar
Gaina, C., Müller, R. D., Royer, J.-Y., Stock, J., Hardebeck, J. & Symonds, P. 1998 a. The tectonic history of the Tasman Sea: a puzzle with 13 pieces. Journal of Geophysical Research 103, 12413–33.Google Scholar
Gaina, C., Müller, R. D., Royer, J.-Y. & Symonds, P. 1999. Evolution of Luisiade triple Junction. Journal of Geophysical Research 104, 12927–39.Google Scholar
Gaina, C., Royer, J.-Y., Müller, R. D. & Symonds, P. 1998 b. The opening of the Tasman Sea: a gravity anomaly animation. Earth Interactions 2, 122.Google Scholar
Gibson, P. J. 1989. Petrology of two Tertiary oil shale deposits from Queensland, Australia. Journal of the Geological Society 146, 319–31.Google Scholar
Gray, A. R. G. 1976. Hillsborough Basin. In Economic Geology of Australia and Papua New Guinea. Volume 3: Petroleum (eds Leslie, R. B., Evans, H. J. & Knight, C. L.), pp. 460–4. Australasian Institute of Mining and Metallurgy, Monograph no. 7.Google Scholar
Guiraud, R. 1998. Mesozoic rifting and basin inversion along the northern African Tethyan margin: an overview. In Petroleum Geology of North Africa (eds MacGregor, D. S., Moody, R. T. J. & Clark-Lowes, D. D.), pp. 217–29. Geological Society of London, Special Publication no. 132.Google Scholar
Hall, R. 2002. Cainozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20, 353431.Google Scholar
Heidbach, O., Rajabi, M., Reiter, K. & Ziegler, M. 2016. World Stress Map Database Release 2016. GFZ Data Services. https://doi.org/10.5880/WSM.2016.001.Google Scholar
Henderson, R. A., Fergusson, C. L., Leitch, E. C., Morand, V. J., Reinhardt, J. J. & Carr, P. F. 1993. Tectonics of the northern New England Fold Belt. In New England Orogen, Eastern Australia (eds Flood, P. G. & Aitchison, J. C.), pp. 505–15. Department of Geology and Geophysics, University of New England, Armidale.Google Scholar
Hensel, H. D., McCulloch, M. T. & Chappell, B. W. 1985. The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochimica et Cosmochimica Acta 49, 369–84.Google Scholar
Henstridge, D. A. & Hutton, A. C. 1987. Third Australian Workshop on Oil Shale Geology and organic petrography of the Nagoorin oil shale deposit. Fuel 66, 301–4.Google Scholar
Hill, K. C. & Hall, R. 2003. Mesozoic-Cenozoic evolution of Australia's New Guinea margin in a west Pacific context. In Evolution and Dynamics of the Australian Plate (eds Hillis, R. R. & Müller, R. D.), pp. 265–90. Geological Society of Australia, Special Publication no. 22; Geological Society of America, Special Paper no. 372, 265–90.Google Scholar
Hill, K. C., Hill, K. A., Cooper, G. T., O'Sullivan, A. J., O'Sullivan, P. B. & Richardson, M. J. 1995. Inversion around the Bass Basin, SE Australia. In Basin Inversion (eds Buchanan, J. G. & Buchanan, P. G.), pp. 525–47. Geological Society of London, Special Publication no. 88.Google Scholar
Hill, P. J. 1992. Capricorn and northern Tasman Basins; structure and depositional systems. Exploration Geophysics 23, 153–61.Google Scholar
Hill, P. J. 1994. Geology and geophysics of the offshore Maryborough, Capricorn and northern Tasman Basins: results of AGSO Survey 91. Canberra, Australian Geological Survey Organisation, Record 1994/1.Google Scholar
Hillis, R. R., Sandiford, M., Reynolds, S. D. & Quigley, M. C. 2008. Present-day stresses, seismicity and Neogene-to-Recent tectonics of Australia's ‘passive'margins: intraplate deformation controlled by plate boundary forces. In The Nature and Origin of Comrpession in Passive Margins (eds Johnson, H., Doré, T. G., Gatliff, R. W., Holdsworth, R. W., Lundin, E. R. & Ritchie, J. D.), pp. 7190. Geological Society of London, Special Publication no. 306.Google Scholar
Hodgkinson, J., McLoughlin, S. & Cox, M. 2007. Drainage patterns in southeast Queensland: the key to concealed geological structures? Australian Journal of Earth Sciences 54, 1137–50.Google Scholar
Holcombe, R. J., Stephens, C. J., Fielding, C. R., Gust, D., Little, T. A., Sliwa, R., McPhie, J. & Ewart, A. 1997 a. Tectonic evolution of the northern New England Fold Belt: Carboniferous to Early Permian transition from active accretion to extension. In Tectonics and Metallogenesis of the New England Orogen (eds Ashley, P. M. & Flood, P. G.), pp. 6679. Springwood, Australia: Geological Society of Australia, Special Publication no. 19.Google Scholar
Holcombe, R. J., Stephens, C. J., Fielding, C. R., Gust, D., Little, T. A., Sliwa, R., McPhie, J. & Ewart, A. 1997 b. Tectonic evolution of the northern New England Fold Belt: The Permian-Triassic Hunter-Bowen event. In Tectonics and Metallogenesis of the New England Orogen (eds Ashley, P. M. & Flood, P. G.), pp. 5265. Springwood, Australia: Geological Society of Australia, Special Publication no. 19.Google Scholar
Holm, R. J., Rosenbaum, G. & Richards, S. W. 2016. Post 8Ma reconstruction of Papua New Guinea and Solomon Islands: microplate tectonics in a convergent plate boundary setting. Earth-Science Reviews 156, 6681.Google Scholar
Hoy, D. & Rosenbaum, G. 2017. Episodic behavior of Gondwanide deformation in eastern Australia: Insights from the Gympie Terrane. Tectonics 36, 1497–520.Google Scholar
Johnston, A. C. & Schweig, E. S. 1996. The Enigma of the New Madrid earthquakes of 1811–1812. Annual Review of Earth and Planetary Sciences 24, 339–84.Google Scholar
Kamp, P. J. J. 1986. The mid-Cenozoic Challenger Rift System of western New Zealand and its implications for the age of Alpine fault inception. GSA Bulletin 97, 255–81.Google Scholar
Keep, M., Hengesh, J. & Whitney, B. 2012. Natural seismicity and tectonic geomorphology reveal regional transpressive strain in northwestern Australia. Australian Journal of Earth Sciences 59, 341–54.Google Scholar
Knesel, K. M., Cohen, B. E., Vasconcelos, P. M. & Thiede, D. S. 2008. Rapid change in drift of the Australian plate records collision with Ontong Java plateau. Nature 454, 754–7.Google Scholar
Korsch, R. J. 2004. A Permian-Triassic retroforeland thrust system; the New England Orogen and adjacent sedimentary basins, eastern Australia. In Thrust Tectonics and Hydrocarbon Systems (ed. McClay, K. R.), pp. 515–37. AAPG, Memoir no. 82.Google Scholar
Korsch, R. J., Borham, C. J., Totterdell, J. M., Shaw, R. D. & Nicoll, M. G. 1998. Development and petroleum resources of the Bowen, Gunnedah and Surat Basins, Eastern Australia. The APPEA Journal 38, 199237.Google Scholar
Korsch, R. J., O'Brien, P. E., Sexton, M. J., Wake-Dyster, K. D. & Wells, A. T. 1989. Development of Mesozoic transtensional basins in easternmost Australia. Australian Journal of Earth Sciences 36, 1328.Google Scholar
Korsch, R. J. & Totterdell, J. M. 2009. Subsidence history and basin phases of the Bowen, Gunnedah and Surat Basins, eastern Australia. Australian Journal of Earth Sciences 56, 335–53.Google Scholar
Korsch, R. J., Totterdell, J. M., Cathro, D. L. & Nicoll, M. G. 2009 a. Early Permian East Australian Rift System. Australian Journal of Earth Sciences 56, 381400.Google Scholar
Korsch, R. J., Totterdell, J. M., Fomin, T. & Nicoll, M. G. 2009 b. Contractional structures and deformational events in the Bowen, Gunnedah and Surat basins, eastern Australia. Australian Journal of Earth Sciences 56, 477–99.Google Scholar
Leitch, E. C. 1975. Plate tectonic interpretation of the Paleozoic history of the New England fold belt. Geological Society of America Bulletin 86, 141–4.Google Scholar
Levell, B., Argent, J., Doré, A. G. & Fraser, S. 2010. Passive margins: overview. In Petroleum Geology: From Mature Basins to New Frontiers–Proceedings of the 7th Petroleum Geology Conference, pp. 823–30. Geological Society of London, Petroleum Geology Conference Series no. 7.Google Scholar
Lipski, P. 2001. Geology and hydrocarbon potential of the Jurassic-Cretaceous Maryborough Basin. In Eastern Australasian Basins Symposium (eds Hill, K.C. & Bernecker, T.), pp. 263268. Melborne, Australia: Petroleum Exploration Society of Australia, Special Publication.Google Scholar
Liu, L., Zoback, M. D. & Segall, P. 1992. Rapid intraplate strain accumulation in the New Madrid seismic zone. Science 257, 1666–9.Google Scholar
McConnochie, M. J. & Henstridge, D. A. 1985. The Lowmead Graben—Geology, Tertiary oil shale genesis and regional tectonic implications. Australian Journal of Earth Sciences 32, 205–18.Google Scholar
McCue, K. F. 1996. Atlas of isoseismal maps of Australian earthquakes, Part 3. Department of Primary Industries and Energy, Australian Geological Survey Organization, AGSO Record 1995/44.Google Scholar
McCue, K. F., Wesson, V. & Gibson, G. M. 1990. The Newcastle, New South Wales, earthquake of 28 December 1989. Bureau of Mineral Resources Journal of Australian Geology and Geophysics 11, 559–67.Google Scholar
McKavanagh, B. M., Boreham, B. W., Cuthbertson, R. J., McCue, K. F. & Cooper, W. V. 1993. The Bajool earthquake sequence of 1991, and implications for the seismicity of central Queensland. Australian Journal of Earth Sciences 40, 455–60.Google Scholar
McPherson, A., Clark, D., Macphail, M. & Cupper, M. 2014. Episodic post-rift deformation in the southh-eastern Australian passive margin: evidence from the Lapstone Structural Complex. Earth Surface Processes and Landforms 39, 1449–66.Google Scholar
Miller, H. G. & Singh, V. 1994. Potential field tilt: a new concept for location of potential field sources. Journal of Applied Geophysics 32, 213–7.Google Scholar
Müller, R. D., Dyksterhuis, S. & Rey, P. 2012. Australian paleo-stress fields and tectonic reactivation over the past 100 Ma. Australian Journal of Earth Sciences 59, 1328.Google Scholar
Murphy, P. R. 1976. Geology of the Monto 1:250,000 sheet area. Queensland Department of Mines, Geological Survey of Queensland.Google Scholar
Nightingale, M. 2011. Boyne River 2D seismic survey 2008. Brisbane, Australia: Arrow Energy N.L.Google Scholar
O'Brien, P. E., Korsch, R. J., Wells, A. T., Sexton, M. J. & Wake-Dyster, K. D. 1994. Structure and tectonics of the Clarence-Moreton Basin. In Geology and Petroleum Potential of the Clarence-Morton Basin, New South Wales and Queensland (eds Wells, A. T. & O'Brien, P. E.), 117–88. Australian Geological Survey Organisation, Bulletin no. 241.Google Scholar
Petterson, M. G., Babbs, T., Neal, C. R., Mahoney, J. J., Saunders, A. D., Duncan, R. A., Tolia, D., Magua, R., Qopoto, C., Mahoaa, H. & Natogga, D. 1999. Geological–tectonic framework of Solomon Islands, SW Pacific: crustal accretion and growth within an intraoceanic setting. Tectonophysics 301, 335–60.Google Scholar
Petterson, M. G., Neal, C. R., Mahoney, J. J., Kroenke, L. W., Saunders, A. D., Babbs, T., Duncan, R. A., Tolia, D. & McGrail, B. A. 1997. Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau–Solomon arc collision and for the fate of ocean plateaus. Tectonophysics 283, 281–33.Google Scholar
Pinder, B. 2011. Boyne River-2, -2A, -2B, & -2C well completion report. Brisbane, Australia: Arrow Energy N.L.Google Scholar
Quigley, M. C., Clark, D. & Sandiford, M. 2010. Tectonic geomorphology of Australia. In Australian Landscapes (eds Bishop, P. & Phillans, B.), pp. 243–65. Geological Society of London, Special Publication no. 346.Google Scholar
Quigley, M., Cupper, M. & Sandiford, M. 2006. Quaternary faults of south-central Australia: palaeoseismicity, slip rates and origin. Australian Journal of Earth Sciences 53, 285301.Google Scholar
Rajabi, M., Heidbach, O., Tingay, M. & Reiter, K. 2017 a. Prediction of the present-day stress field in the Australian continental crust using 3D geomechanical-numerical models. Australian Journal of Earth Sciences 64, 435–54.Google Scholar
Rajabi, M., Tingay, M., Heidbach, O., Hillis, R. & Reynolds, S. 2017 b. The present-day stress field of Australia. Earth-Science Reviews 168, 165–89.Google Scholar
Reynolds, S. D., Coblentz, D. D. & Hillis, R. R. 2002. Tectonic forces controlling the regional intraplate stress field in continental Australia: Results from new finite element modeling. Journal of Geophysical Research: Solid Earth 107, ETG1–15.Google Scholar
Robbie, S. M. 2004. Boyne River 1 well completion report. Brisbane, Australia: Arrow Energy N.L.Google Scholar
Rosenbaum, G., Li, P. & Rubatto, D. 2012. The contorted New England Orogen (eastern Australia): new evidence from U-Pb geochronology of early Permian granitoids. Tectonics 31, TC1006, doi:1010.1029/2011TC002960.Google Scholar
Rynn, J. M. W., Denham, D., Greenhalgh, S., Jones, T., Gregson, P. J., McCue, K. F. & Smith, R. S. 1987. Atlas of Isoseismal Maps of Australian Earthquakes, Part 2. Canberra: Bureau Of Mineral Resources 222, Australian Government Publishing Service.Google Scholar
Sandiford, M. 2003 a. Geomorphic constraints on the Late Neogene tectonics of the Otway Range, Victoria. Australian Journal of Earth Sciences 50, 6980.Google Scholar
Sandiford, M. 2003 b. Neotectonics of southeastern Australia: linking the Quaternary faulting record with seismicity and in situ stress. In Evolution and Dynamics of the Australian Plate (eds Hillis, R.R. & Müller, R.D.), pp. 107–19. Geological Society of America, Special Paper no. 372.Google Scholar
Sandiford, M. 2003 c. Neotectonics of southeastern Australia: linking the Quaternary faulting record with seismicity and in situ stress. In Evolution and Dynamics of the Australian Plate (eds Hillis, R. R. & Muller, D.), pp. 101–13. Geological Society of Australia, Special Publication no. 22.Google Scholar
Sandiford, M. & Hand, M. 1998. Controls on the locus of intraplate deformation in central Australia. Earth and Planetary Science Letters 162, 97110.Google Scholar
Schellart, W. P., Lister, G. S. & Toy, V. G. 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews 76, 191233.Google Scholar
Shaw, S. E. & Flood, R. H. 1981. The New England batholith, eastern Australia: geochemical variations in time and space. Journal of Geophysical Research 86, 10530–44.Google Scholar
Struckmeyer, H. I. M. & Symonds, P. A. 1997. Tectonostratigraphic evolution of the Townsville Basin, Townsville Trough, offshore northeastern Australia. Australian Journal of Earth Sciences 44, 799817.Google Scholar
Struckmeyer, H. I. M., Symonds, P. A., Fellows, M. E. & Scott, D. L. 1994. Structural and stratigraphic evolution of the Townsville Basin, Townsville Trough, offshore northeastern Australia. Canberra: Australian Geological Survey Organisation, Record 1994/50.Google Scholar
Sykes, L. R. 1978. Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation. Reviews of Geophysics 16, 621–88.Google Scholar
Tavener, E., Flottmann, T. & Brooke-Barnett, S. 2017. In situ stress distribution and mechanical stratigraphy in the Bowen and Surat basins, Queensland, Australia. In Geomechanics and Geology (eds Turner, J. P., Healy, D., Hillis, R. R. & Welch, M. J.), pp. 3147. Geological Society of London, Special Publication no. 458.Google Scholar
Veevers, J. J. 2000. Change of tectono-stratigraphic regime in the Australian plate during the 99 Ma (mid-Cretaceous) and 43 Ma (mid-Eocene) swerves of the Pacific. Geology 28, 4750.Google Scholar
Weissel, J. K. & Watts, A. B. 1979. Tectonic evolution of the Coral Sea Basin. Journal of Geophysical Research 84, 4572–82.Google Scholar
Whitney, B. B., Hengesh, J. V. & Gillam, D. 2016. Styles of neotectonic fault reactivation within a formerly extended continental margin, North West Shelf, Australia. Tectonophysics 686, 118.Google Scholar
Willcox, J. B. & Sayers, J. 2002. Geological framework of the central Lord Howe Rise (Gower Basin) region. Report by Geoscience Australia Record, 2002/11, 84 pp.Google Scholar
Wood, G. R. 1982. Palynological examination of core samples from the Lowmead and Nagoorin oil shale prospects. Record no. 1982/39, Geological Survey of Queensland, Brisbane.Google Scholar
Ziegler, P. A., Cloetingh, S. & van Wees, J.-D. 1995. Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252, 759.Google Scholar