Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T08:34:43.381Z Has data issue: false hasContentIssue false

Structural and kinematic analyses of the basement window within the hinterland fold-and-thrust belt of the Zagros orogen, Iran

Published online by Cambridge University Press:  04 November 2016

KHALIL SARKARINEJAD*
Affiliation:
Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71454, Iran
SOMAYE DERIKVAND
Affiliation:
Department of Earth Sciences, College of Sciences, Shiraz University, Shiraz 71454, Iran
*
*Author for correspondence: [email protected]

Abstract

The Zagros hinterland fold-and-thrust belt is located in the central portion of the Zagros Thrust System and consists of the exhumed basement windows associated with NW-striking and NE-dipping flexural duplex structures that contain in-sequence thrusting and related folds. Mylonitic nappes of the basement were exhumed along deep-seated sole thrusts of the Zagros Thrust System. Lattice preferred orientation (LPO) c-axes of quartz show asymmetric type-1 crossed girdles that demonstrate a non-coaxial deformation under plane strain conditions. Based on the opening angles of quartz c-axis fabric skeletons, deformation temperatures vary from 425±50°C to 540±50°C, indicating amphibolite facies conditions. The estimated mean kinematic vorticity evaluated from quartz c-axis of the quartzo-feldspathic mylonites (Wm = 0.55±0.06) indicates the degree of non-coaxiality during mylonite exhumation. The estimated angle θ between the maximum instantaneous strain axis (ISA1) and the transpressional zone boundary is 17°, and the angle of oblique convergence is 57° in the M2 nappe of the basement involved. This indicates that the mylonitic nappe was formed by a combination of 62% pure shear and 38% simple shear during oblique convergence.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agard, P., Monie, P., Gerber, W., Omrani, J., Molinaro, M., Meyer, B., Labrousse, L., Vrielynck, B., Jolivet, L. & Yamato, P. 2006. Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: implications for Neotethyan wedge dynamics. Journal of Geophysical Research 111, 19782012.CrossRefGoogle Scholar
Agard, P., Omrani, J., Jolivet, L. & Mouthereau, F. 2005. Convergence history across Zagros (Iran): constraints from collisional and earlier deformation. International Journal of Earth Sciences 94, 401–19.CrossRefGoogle Scholar
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman, W., Monie, P., Meyer, B. & Wortel, R. 2011. Zagros orogeny: a subduction-dominated process. Geological Magazine 148, 692725.CrossRefGoogle Scholar
Alavi, M. 1994. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–38.CrossRefGoogle Scholar
Alavi, M. 2007. Structures of the Zagros fold-thrust belt in Iran. American Journal of Science 307, 1064–95.CrossRefGoogle Scholar
Allen, M. B., Jackson, J. & Walker, R. 2004. Late Cenozoic reorganization of the Arabia-Eurasia collision and comparison of the short-term and long-term deformation rates. Tectonics 23 (2). doi: 10.1029/2004TC001695.Google Scholar
Authemayou, C., Bellier, O., Chardon, D., Malekzade, Z. & Abbassi, M. 2005. Role of Kazerun fault system in active deformation of the Zagros fold-and-thrust belt (Iran). Comptes Rendus de l'Académie des Sciences 337, 539–45.Google Scholar
Bailey, C. M. & Eyster, E. L. 2003. General shear deformation in the Pinaleno Mountains metamorphic core complex, Arizona. Journal of Structural Geology 25, 1883–93.CrossRefGoogle Scholar
Berberian, M. & King, G. C. P. 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 12, 210–65.CrossRefGoogle Scholar
Berthe, D., Choukroune, P. & Gapais, D. 1979. Orientations préférentielles du quartz et orthogneissification progressive en régime cisaillant: l'exemple du cisaillement sud-armoricain. Bulletin Minéral 102, 265–72.CrossRefGoogle Scholar
Berthe, D., Choukroune, P. & Jegouzo, P. 1979. Orthogeneiss, mylonite and non-coaxial deformation of granites: the example of South Armorican shear zone. Journal of Structural Geology 1, 3142.CrossRefGoogle Scholar
Blance, E. J., Allen, M. & Inger, S. 2003. Structural styles in the Zagros Simple Folded Zone, Iran. Journal of the Geological Society 160, 401–12.CrossRefGoogle Scholar
Dewey, J. F., Pitman, W. C., Ryan, W. B. F. & Bonnin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137–80.2.0.CO;2>CrossRefGoogle Scholar
Dunnet, D. 1969. A technique of finite strain analysis using elliptical particles. Tectonophysics 7, 117–36.CrossRefGoogle Scholar
Elliott, D. 1983. The construction of balanced cross-sections. Journal of Structural Geology 5, 101.CrossRefGoogle Scholar
Erslev, E. A. & Ge, H. 1990. Least squares center-to-center and mean object ellipse fabric analysis. Journal of Structural Geology 8, 1047–59.CrossRefGoogle Scholar
Escher, A. & Beaumont, C. 1997. Formation, burial and exhumation of basement nappes at crustal scale: a geometric model based on the Western Swiss-Italian Alps. Journal of Structural Geology 19, 955–74.CrossRefGoogle Scholar
Etchecopar, A. 1977. A plane model of progressive deformation in polycrystalline aggregates. Tectonophysics 39, 121–39.CrossRefGoogle Scholar
Etchecopar, A. & Vasseur, G. 1987. A 3D kinematic model of fabric development in polycrystalline aggregates: comparison with experimental and natural examples. Journal of Structural Geology 9, 705–17.CrossRefGoogle Scholar
Faill, R. T. 1969. Kink band structures in the Valley and Ridge Province, central Pennsylvania. Geological Society of America Bulletin 80, 2539–50.CrossRefGoogle Scholar
Faill, R. T. 1973. Kink band folding, Valley and Ridge Province, Pennsylvania. Geological Society of America Bulletin 84, 1289–314.2.0.CO;2>CrossRefGoogle Scholar
Forte, A. M. & Bailey, C. M. 2007. Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. Journal of Structural Geology 29, 9831001.CrossRefGoogle Scholar
Fossen, H. 2010. Structural Geology. Cambridge: Cambridge University Press, 457 pp.CrossRefGoogle Scholar
Fossen, H. & Tikoff, B. 1993. The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics. Journal of Structural Geology 15, 413–22.CrossRefGoogle Scholar
Fossen, H., Tikoff, B. & Teyssier, C. 1994. Strain modeling of transpression and transtension deformation. Norsk Geologisk Tidsskrift 74, 134–45.Google Scholar
Frassi, C., Carosi, R., Montomoli, C. & Law, R. D. 2009. Kinematics and vorticity of flow associated with post-collisional oblique transpression in the Variscan Axial Zone of northern Sardinia (Italy). Journal of Structural Geology 31, 1458–71.CrossRefGoogle Scholar
Gomez-Rivas, E., Bonse, P. D., Griera, A., Carreras, J., Druguet, E. & Evans, L. 2007. Strain vorticity analysis using small-scale faults associated drag folds. Journal of Structural Geology 29, 1882–99.CrossRefGoogle Scholar
Goodarzi, M. 2010. Geological Map of the Doroud Area. Scale 1:100000. Tehran: National Iranian Oil Company.Google Scholar
Goscombe, B., Passcier, C. W. & Hand, M. 2004. Boudinage classification: end-member boudin types and modified boudin structures. Journal of Structural Geology 26, 739–63.CrossRefGoogle Scholar
Grasemann, B., Fritz, H. & Vannay, J. C. 1999. Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India): implications for a decelerating strain path and the extrusion of orogenic wedges. Journal of Structural Geology 21, 837–53.CrossRefGoogle Scholar
Holcombe, R. J. & Little, T. A. 2001. A sensitive vorticity gauge using rotated prophyroblasts and its application to rocks adjacent to the Alpine fault, New Zealand. Journal of Structural Geology 23, 979–89.CrossRefGoogle Scholar
Iacopini, D., Carosi, R., Montomoli, C. & Passchier, C. W. 2008. Strain analysis and vorticity of flow in the Northern Sardinian Variscan Belt: recognition of a partitioned oblique deformation event. Tectonophysics 446, 7796.CrossRefGoogle Scholar
Jessel, M. W. & Lister, G. S. 1990. A simulation of the temperature dependence of quartz fabrics. In Deformation Mechanisms, Rheology and Tectonics (eds Knipe, R. J. & Potter, E. H.), pp. 353–62. Geological Society of London, Special Publication no. 54.Google Scholar
Jessup, M. J., Law, R. D. & Frassi, C. 2007. The rigid grain net (RGN): an alternative method for estimating mean kinematic vorticity number (Wm). Journal of Structural Geology 29, 411–21.CrossRefGoogle Scholar
Jones, R. R., Holdsworth, R. E., Clegg, P., McCaffrey, K. & Tavarnelli, E. 2004. Inclined transpression. Journal of Structural Geology 26, 1531–48.CrossRefGoogle Scholar
Jones, R. & Tanner, G. P. W. 1995. Strain partitioning in transpression zones. Journal of Structural Geology 17, 793802.CrossRefGoogle Scholar
Koop, W. J. & Stoneley, R. 1982. Subsidence history of the Middle East Zagros Basin, Permian to recent. Philosophical Transactions of the Royal Society of London 305, 149–68.Google Scholar
Kruhl, J. H. 1996. Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer. Journal of Metamorphic Geology 14, 581–9.CrossRefGoogle Scholar
Law, R. D. 1987. Heterogeneous deformation and quartz crystallographic fabric transitions: natural examples from the Moine thrust zone at the Stack of Glencoul, northern Assynt. Journal of Structural Geology 9, 819–34.CrossRefGoogle Scholar
Law, R. D. 1990. Crystallographic fabrics: a selective review of their applications to research in structural geology. In Deformation Mechanisms, Rheology and Tectonics (eds Knipe, R. J. & Potter, E. H.), pp. 335–52. Geological Society of London, Special Publication no. 54.Google Scholar
Law, R. D. 2010. Moine Thrust zone mylonites at the Stack of Glencoul: II – results of vorticity analyses and their tectonic significance. In Continental Tectonics and Mountain Building: The Legacy of Peach and Horne (eds Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A.), pp. 579602. Geological Society of London, Special Publication no. 335.Google Scholar
Law, R. D., Knipe, R. J. & Dayan, H. 1984. Strain path partitioning within thrust sheets: microstructural and petrofabric evidence from the Moine Thrust zone at Loch Eriboll, northwest Scotland. Journal of Structural Geology 6, 477–97.CrossRefGoogle Scholar
Law, R. D., Searle, M. P. & Simpson, R. L. O. 2004. Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan slab, Everest Massif, Tibet. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones (eds Law, R. D., Searle, M. P. & Godlin, L.), pp. 305–20. Geological Society of London, Special Publication no. 161.Google Scholar
Lisle, R. J. 1985. Geological Strain Analysis: A Manual for the Rf/ϕ Method. New York: Pergamon Press, 99 pp.Google Scholar
Lister, G. S. 1977. Crossed girdle c-axis fabrics in quartzites plastically deformed by plane strain and progressive simple shear. Tectonophysics 39, 51–4.CrossRefGoogle Scholar
Lister, G. S. & Dornsiepen, U. F. 1982. Fabric transitions in the Saxony granulite terrain. Journal of Structural Geology 4, 8192.CrossRefGoogle Scholar
Lister, G. S. & Hobbs, B. E. 1980. The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history. Journal of Structural Geology 2, 355–70.CrossRefGoogle Scholar
Lister, G. S. & Paterson, M. S. 1979. The simulation of fabric development during plastic deformation and its application to quartzite: fabric transitions. Journal of Structural Geology 1, 99115.CrossRefGoogle Scholar
Lister, G. S., Paterson, M. S. & Hobbs, B. E. 1978. The simulation of fabric development in plastic deformation and its application to quartzite: the model. Tectonophysics 45, 107–58.CrossRefGoogle Scholar
Lister, G. S. & Snoke, A. W. 1984. S-C mylonites. Journal of Structural Geology 6, 617–38.CrossRefGoogle Scholar
Lister, G. S. & Williams, P. F. 1979. Fabric development in shear zones: theoretical controls and observed phenomena. Journal of Structural Geology 1, 283–98.CrossRefGoogle Scholar
Marques, F. O., Schmid, D. W. & Andersen, T. B. 2007. Applications of inclusion behavior models to a major shear zone system: the Nordfjord-Sogn Detachment Zone in western Norway. Journal of Structural Geology 29, 1622–31.CrossRefGoogle Scholar
McClay, K. R., Whitehouse, P. S., Dooley, M. & Richards, M. 2004. 3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology 21, 857–77.CrossRefGoogle Scholar
McQuarrie, N. 2004. Crustal scale geometry of the Zagros fold-thrust belt, Iran. Journal of Structural Geology 26, 519–35.CrossRefGoogle Scholar
Mohajjel, M. & Fergusson, C. L. 2000. Dextral transpression in Late Cretaceous continental collision, Sanandaj-Sirjan Zone, western Iran. Journal of Structural Geology 22, 1125–39.CrossRefGoogle Scholar
Molinaro, M., Letuemy, P., Guezou, J. C., Frizon De Lamotte, D. & Eshraghi, S. A. 2005. The structure and kinematics of the southeastern Zagros fold-thrust belt, Iran: from thin-skinned to thick-skinned tectonics. Tectonics 24, 119.CrossRefGoogle Scholar
Morgan, S. S. & Law, R. D. 2004. Unusual transition in quartzite dislocation creep regimes and crystal slip systems in the aureole of the Eureka Valley–Joshua Flat–Beer Creek pluton, California: a case for anhydrous conditions created by decarbonation reactions. Tectonophysics 384, 209–31.CrossRefGoogle Scholar
Narr, W. & Suppe, J. 1994. Kinematics of basement-involved compressive structures. American Journal of Science 294, 802–60.CrossRefGoogle Scholar
Passchier, C. W. 1987. Stable positions of rigid objects in non-coaxial flow – a study in vorticity analysis. Journal of Structural Geology 9, 679–90.CrossRefGoogle Scholar
Passchier, C. W. & Simpson, C. 1986. Porphyroclast systems as kinematic indicators. Journal of Structural Geology 8, 831–44.CrossRefGoogle Scholar
Passchier, C. W. & Trouw, R. A. J. 2005. Microtectonics. Berlin: Springer, 366 pp.Google Scholar
Passchier, C. W. & Urai, J. L. 1988. Vorticity and strain analysis using Mohr diagrams. Journal of Structural Geology 10, 755–63.CrossRefGoogle Scholar
Platt, J. P. & Behrmann, J. H. 1986. Structures and fabrics in a crustal scale shear zone, Betic Cordilleras, SE Spain. Journal of Structural Geology 8, 1534.CrossRefGoogle Scholar
Poblet, J. & Lisle, R. J. 2011. Kinematic evolution and structural styles of fold-and-thrust belts. In Kinematic Evolution and Structural Styles of Fold-And-Thrust Belts (eds Poblet, J. & Lisle, R. J.), pp. 124. Geological Society of London, Special Publication no. 349.Google Scholar
Ramsay, J. G. 1962. The geometry and mechanics of formation of ‘similar’ type folds. The Journal of Geology 70, 309–27.CrossRefGoogle Scholar
Ramsay, J. G. 1967. Folding and Fracturing of Rocks. New York: McGraw Hill, 568 pp.Google Scholar
Ramsay, J. G. & Huber, M. I. 1983. The Techniques of Modern Structural Geology, Volume 1: Strain Analysis. London: Academic Press, 307 pp.Google Scholar
Ramsay, J. G. & Huber, M. I. 1987. The Techniques of Modern Structural Geology. Volume 2: Folds and Fractures. London: Academic Press, 392 pp.Google Scholar
Regard, V., Bellier, O., Thomas, J. C., Abbassi, M., Mercier, J., Shabanian, E., Feghhi, K. & Soleymani, S. 2004. Accommodation of Arabia-Eurasia convergence in the Zagros-Makran transfer zone, SE Iran: a transition between collision and subduction through a young deforming system. Tectonics 23, 124.CrossRefGoogle Scholar
Ricou, L. E. 1971. Le croissant ophiolitique péri-arabe. Une ceinture de nappes mises en place au Crétacé supérieur. Revue de Géographie Physique et de Géologie Dynamique 13, 327–50.Google Scholar
Sahandi, M. R., Radfar, J., Hoseinidoust, J., Mohajjel, M., Chaichi, Z. & Haddadan, M. 2006. Geological Map of the Shazand Area. Scale 1:100000. Tehran: Geological Survey of Iran.Google Scholar
Sanderson, D. J. & Marchini, W. R. D. 1984. Transpression. Journal of Structural Geology 6, 449–58.CrossRefGoogle Scholar
Sarkarinejad, K. 1999. Tectonic finite strain analysis: using Ghouri deformed conglomerate, Neyriz area, southwestern Iran. Iranian Journal of Science and Technology 23, 351–63.Google Scholar
Sarkarinejad, K. 2005. Structures and microstructures related to steady-state mantle flow in the Neyriz ophiolite, Iran. Journal of Asian Earth Sciences 25, 859–81.CrossRefGoogle Scholar
Sarkarinejad, K. 2007. Quantitative finite strain and kinematic flow analyses along the Zagros transpression zone, Iran. Tectonophysics 442, 4965.CrossRefGoogle Scholar
Sarkarinejad, K. & Alizadeh, A. 2009. Dynamic model for the exhumation of the Tutak gneiss dome within a bivergent wedge in the Zagros Thrust System of Iran. Journal of Geodynamics 47, 201–9.CrossRefGoogle Scholar
Sarkarinejad, K. & Azizi, A. 2008. Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. Journal of Structural Geology 30, 116–36.CrossRefGoogle Scholar
Sarkarinejad, K., Faghih, A. & Grasemann, B. 2008. Transpressional deformations within the Sanandaj-Sirjan Metamorphic Belt (Zagros Mountains, Iran). Journal of Structural Geology 30, 818–26.CrossRefGoogle Scholar
Sarkarinejad, K. & Ghanbarian, M. A. 2014. The Zagros hinterland fold-and-thrust belt in-sequence thrusting, Iran. Journal of Asian Earth Sciences 85, 6679.CrossRefGoogle Scholar
Sarkarinejad, K., Godin, L. & Faghih, A. 2009. Kinematic vorticity flow analysis and 40Ar/39Ar geochronology related to inclined extrusion of the HP-LT metamorphic rocks along the Zagros accretionary prism, Iran. Journal of Structural Geology 31, 691706.CrossRefGoogle Scholar
Sarkarinejad, K., Partabian, A., Faghih, A. & Kusky, T. M. 2012. Usage of strain and vorticity analyses to interpret large-scale fold mechanisms along the Sanandaj-Sirjan metamorphic belt, SW Iran. Geological Journal 47, 99110.CrossRefGoogle Scholar
Sepehr, M. & Cosgrove, J. W. 2004. Structural framework of the Zagros fold–thrust belt, Iran. Marine and Petroleum Geology 21, 829–43.CrossRefGoogle Scholar
Sherkati, S. & Letouzey, J. 2004. Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine and Petroleum Geology 2, 535–54.CrossRefGoogle Scholar
Simpson, C. & De Paor, D. G. 1993. Strain and kinematic analysis in general shear zones. Journal of Structural Geology 15, 120.CrossRefGoogle Scholar
Simpson, C. & Schimid, S. 1983. An evaluation of criteria to deduce the sense of movement in sheared rocks. Geological Society of America Bulletin 94, 1281–8.2.0.CO;2>CrossRefGoogle Scholar
Stampfli, G. M., Mosar, J., Favre, P., Pillevuit, A. & Vannay, J. C. 2001. Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys East Mediterranean basin connection. Mémoires du Muséum national d'histoire naturelle 186, 51108.Google Scholar
Stöcklin, J. 1968. Structural history and tectonics of Iran: a review. Bulletin of the American Association of Petroleum Geologists 52, 1229–58.Google Scholar
Sullivan, W. A. 2008. Significance of transport-parallel strain variations in part of the Raft River shear zone, Raft River Mountains, Utah, USA. Journal of Structural Geology 30, 138–58.CrossRefGoogle Scholar
Suppe, J. 1983. Geometry and kinematics of fault-bend folding. American Journal of Sciences 283, 648721.Google Scholar
Takin, M. 1972. Iranian geology and continental drift in the Middle East. Nature 235, 147–50.CrossRefGoogle Scholar
Talebian, M. & Jackson, J. 2004. A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International 156, 506–26.CrossRefGoogle Scholar
Tatar, M., Hatzfeld, D. & Ghafory-Ashtiyani, M. 2004. Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophysical Journal International 156, 255–66.CrossRefGoogle Scholar
Teyssier, C., Tikoff, B. & Markley, M. 1995. Oblique plate motion and continental tectonics. Geology 23, 447–50.2.3.CO;2>CrossRefGoogle Scholar
Thigpen, J. R., Law, R. D., Lloyd, G. E., Brown, S. J. & Cook, B. 2010. Deformation temperatures, vorticity of flow and strain symmetry in the Loch Eriboll mylonites, NW Scotland: implications for the kinematic and structural evolution of the northernmost Moine thrust zone. In Continental Tectonics and Mountain Building: The Legacy of Peach and Horne (eds Law, R. D., Butler, R. W. H., Holdsworth, R. E., Krabbendam, M. & Strachan, R. A.), pp. 623–62. Geological Society of London, Special Publication no. 335.Google Scholar
Tikoff, B. & Fossen, H. 1995. The limitations of three-dimensional kinematic vorticity analysis. Journal of Structural Geology 17, 1771–84.CrossRefGoogle Scholar
Tikoff, B. & Teyssier, C. 1994. Strain modelling of displacement-field partitioning in transpressional orogens. Journal of Structural Geology 16, 1575–88.CrossRefGoogle Scholar
Tullis, J., Christie, J. M. & Griggs, D. T. 1973. Microstructures and preferred orientations of experimentally deformed quartzites. Geological Society of America Bulletin 84, 297314.2.0.CO;2>CrossRefGoogle Scholar
Vaníček, I. & Vaníček, M. 2008. Earth Structures in Transport, Water and Environmental Engineering. Dordrecht: Springer, 637 pp.Google Scholar
Vergés, J., Saura, E., Casciello, E., Fernández, M., Villaseñor, A., Jiménez-Munt, I. & García-Castellanos, D. 2011. Crustal-scale cross-section across the NW Zagros Belt: implications for the Arabian Margin reconstruction. Geological Magazine 148, 739–76.CrossRefGoogle Scholar
Vernant, P., Nilforoushan, F., Haztfeld, D., Abassi, M., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiany, A., Bayer, R., Tavakoli, F. & Chéry, J. 2004. Contemporary crustal deformation and plate kinematics in Middle East constrained by GPS measurement in Iran and northern Oman. Geophysical Journal International 157, 381–98.CrossRefGoogle Scholar
Wallis, S. R. 1992. Vorticity analysis in a metachert from the Sanbagawa Belt, SW Japan. Journal of Structural Geology 14, 271–80.CrossRefGoogle Scholar
Wallis, S. R. 1995. Vorticity analysis and recognition of ductile extension in the Sambagawa belt, SW Japan. Journal of Structural Geology 17, 1077–93.CrossRefGoogle Scholar
Xypolias, P. 2009. Some new aspects of kinematic vorticity analysis in naturally deformed quartzites. Journal of Structural Geology 31, 310.CrossRefGoogle Scholar
Xypolias, P. & Doutsos, T. 2000. Kinematics of rock flow in a crustal-scale shear zone: implication for the orogenic evolution of the southwestern Hellenides. Geological Magazine 137, 8196.CrossRefGoogle Scholar