Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T10:26:39.621Z Has data issue: false hasContentIssue false

Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands)

Published online by Cambridge University Press:  01 May 2009

J. Martí
Affiliation:
Instituto de Ciencias de la Tierra (Jaume Almera), CSIC, c/ Martí i Franques s/n. 08028 Barcelona, Spain
J. Mitjavila
Affiliation:
Departamento de Geología, Museo Nacional de Ciencias Naturales, CSIC, c/Jose Gutierrez Abascal, 2. 28006 Madrid, Spain
V. Araña
Affiliation:
Departamento de Geología, Museo Nacional de Ciencias Naturales, CSIC, c/Jose Gutierrez Abascal, 2. 28006 Madrid, Spain

Abstract

After a long period of subaerial fissure-fed extrusions of basaltic magmas (∼ 12 to > 3 Ma) volcanic activity was then concentrated in the central part of Tenerife. Phonolitic magma chambers formed and a central volcanic complex was constructed (the Las Canadas edifice). The formation of a large depression (the Las Canadas caldera) truncated the top of the edifice. The active twin strato-cones Teide—Pico Viejo are sited in this depression. The history of the Las Canadas caldera and edifice are established from stratigraphy, geochronology (K—Ar dates) and volcanological studies. Two different groups are recognized, separated by a major unconformity. The Lower Group is dated at 2 to 3 Ma and includes the products of several volcanic centres, which together represent several cycles. The Upper Group ranges from 1.56 to 0.17 Ma and includes three different formations representing three long-term (∼ 100 to 300 Ka) volcanic cycles. The periods of dormancy between each formation were of ∼ 120 to 250 Ka duration. The Las Canadas caldera is a multicyclic caldera which formed over the period 1.18–0.17 Ma. Each cycle of activity represented by a formation culminated in caldera collapse which affected different sectors of the Las Canadas edifice. Geological observation and geochronology support an origin by collapse into a magma chamber. The minimum volume of pyroclastic ejecta is substantially greater than the present caldera depression volume (45 km3), but approaches the inferred volume of the original caldera depression (> 140 km3). After the formation of the caldera, sector collapses could also occur at the northern flank of the volcano causing the disappearance of the northern side of the caldera wall.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, J. J., 1989. Estudio volcanoestratigráfico y volcanológico de los piroclastos sálicos del sur de Tenerife. University of La Laguna, Secretariado de Publicaciones, 356 pp.Google Scholar
Alonso, J. J., ArañA, V., & Martí, J., 1988. La ignimbrita de Arico (Tenerife): Mecanismos de eruptión y de emplazamiento. Revisla de la Sociedad Geológica de España 1, 1524.Google Scholar
Alonso, J. J., De La Nuez, J., & Quesada, M. L., 1992. La erupción del volcán Taco (Tenerife, Canarias). Geogaceta 12, 2830.Google Scholar
Ancochea, E., Fuster, J. M., Ibarrola, E., Cendrero, A., Coello, J., Hernan, F., Cantagrel, J. M., & Jamond, C., 1990. Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. Journal of Volcanology and Geothermal Research 44, 231–49.Google Scholar
ArañA, V., 1971. Litología y estructura del Edificio Cañadas, Tenerife (Islas Canarias). Estudios Geológicos XXVII, 95135.Google Scholar
ArañA, V., & Brandle, J. L., 1969. Variation trends in the alkaline salic rocks of Tenerife. Bulletin of Volcanology 33, 1145–65.CrossRefGoogle Scholar
ArañA, V., & Ortiz, R., 1991. The Canary Islands: Tectonics, magmatism and geodynamic framework. In Magmatism in Extensional Structural Settings, The Phanerozoic African Plate (eds Kampunzu, A. B. and Lubala, R. T.), pp. 209–49. Berlin: Springer Verlag.CrossRefGoogle Scholar
Booth, B., 1973. The Granadilla pumice deposit of southern Tenerife, Canary Islands. Proceedings of the Geological Association 84, 353–70.Google Scholar
Bravo, T., 1962. El circo de Cañadas y sus dependencias. Boletín de la Real Sociedad Española de Historia Natural 40, 93108.Google Scholar
Bravo, T., & Bravo, J., 1988. Aglomerados volcánicos en Tenerife, Islas Canarias. II Congreso Geológico de Espana, Comunicaciones II, 1114.Google Scholar
Coello, J., & Bravo, J., 1989. Lineamientos volcanotectónicos en la región central de Tenerife. In Los volcanes y la caldera del Parque Nacional del Teide {Tenerife, Islas Canarias) (eds Arana, V. and Coello, J.), pp. 127–35. Madrid: ICONA.Google Scholar
Del Moro, A., Puxeddu, M., Radicati Di Brozolo, F., & Villa, I. M., 1982. Rb-Sr and K-Ar ages on minerals at temperatures of 300–400 °C from deep wells in the Larderello geothermal field (Italy). Contributions to Mineralogy and Petrology 81, 340–9.CrossRefGoogle Scholar
Druitt, T. H., & Sparks, R. S. J., 1982. A proximal ignimbrite breccia facies on Santorini, Greece. Journal of Volcanology and Geothermal Research 13, 147–71.Google Scholar
Druitt, T. H., Mellors, R., Pyle, D. M., & Sparks, R. S. J., 1989. Explosive volcanism on Santorini, Greece. Geological Magazine 126, 95126.CrossRefGoogle Scholar
Fritsch, K. V., & Reiss, W., 1868. Geologische Beschreibung der Insel Tenerife. Winterthur: Wurster & Co, 496 pp.Google Scholar
Friedlander, I., 1915. Uber Vulcanische Verwerfungstäler. Zeitschrift für Vulkanologie 2.Google Scholar
Fuster, J. M., ArañA, V., Brandle, J. L., Navarro, M., Alonso, U., & Aparicio, A., 1968. Geología y volcanología de las islas Canarias: Tenerife. Madrid: Instituto “Lucas Mallada”, CSIC, 218 pp.Google Scholar
Gacel, C., 1910. Die Mitteatlantischen vulkaninseln. Hahdbuch der Reginalen Geodic. 7, 131.Google Scholar
Gudmundsson, A., 1988. Formation of collapse calderas. Geology 16, 808–10.2.3.CO;2>CrossRefGoogle Scholar
Gautneb, H., Gudmundsson, A., & Oskarsson, N., 1989. Structure, petrochemistry and evolution of a sheet swarm in an Icelandic volcano. Geological Magazine 126, 659–73.CrossRefGoogle Scholar
Hausen, H., 1956. Contributions to the geology of Tenerife. Societas Scientiarum Fennica Commentationes Physico-Mathematicae 18(1), 1247.Google Scholar
Hoernle, K., & Schmincke, H. U., 1993. The role of partial melting in the 15 Ma geochemical evolution of Gran Canada: a blob model for the canary hotspot. Journal of Petrology 34, 599626.CrossRefGoogle Scholar
Ibarrola, E., Ancochea, E., Fuster, J. M., Cantagrel, J. M., Coello, J., Snelling, N. J., & Huertas, M. J., 1993. Cronoestratigrafía del Macizo de Tigaiga: Evolution de un sector del edificiio Cañadas (Tenerife, Islas Canarias). Boletin de la Real Sociedad Española de Historia Natural (Sección Geología) 88(1–4), 5772.Google Scholar
MacFarlane, D. J., & Ridley, W., 1.1968. An interpretation of gravity data for Tenerife, Canary Islands. Earth and Planetary Science Letters 4, 481–6.CrossRefGoogle Scholar
Martí, J., Ablay, G. J., Redshow, L., & Sparks, R. S. J., 1994. Experimental studies of collapse calderas. Journal of the Geological Society (in press).CrossRefGoogle Scholar
Mitchael-Thome, J., 1976. Geology of the Middle Atlantic Islands. Berlin: Gebruder Borntraeger.Google Scholar
Mitjavila, J., & Villa, I. M., 1993. Temporal evolution of the Diego Hernández Formation (Las Cañadas, Tenerife) and confirmation of the age of the caldera using the 40Ar/39Ar method. Revista de la Sociedad Geologíca de España 6(1–2), 61–5.Google Scholar
Navarro, J. M., & Coello, J., 1989. Depressions originated by landslide processes in Tenerife. ESF Meeting on Canarian Volcanism, 150–2.Google Scholar
Newhall, C. G., & Dzurisin, D., 1988. Historical unrest at large calderas of the World. US Geological Survey Bulletin no. 1855, 1108 pp.Google Scholar
Phillips, W. J., 1974. The dynamic emplacement of cone sheets. Tectonophysics 24, 6984.CrossRefGoogle Scholar
Ridley, W. I., 1970. The petrology of the Las Cañadas volcanoes, Tenerife, Canary Islands. Contributions to Mineralogy and Petrology 26, 124–60.Google Scholar
Ridley, W. I., 1971. The origin of some collapse structures in the Canary Islands. Geological Magazine 108, 477–84.Google Scholar
Roberts, J. L., 1970. The intrusion of magma into britle rocks. In Mechanisms of igneous intrusion (eds Newall, G. and Rast, N.), pp. 287338. London: Gallery Press.Google Scholar
Shotton, F. W., & Williams, R. E. G., 1971. Birmingham University Radiocarbon Dates V. Radiocarbon 13(2), 150 pp.Google Scholar
Smith, R. L., 1979. Ash-flow magmatism. Geological Society of America Special Paper 180, 527.CrossRefGoogle Scholar
Spera, F., & Crisp, J. A., 1981. Eruption volume, periodicity and caldera area: relationships and inferences on development of compositional zonation in silicic magma chambers. Journal of Volcanology and Geothermal Research 11, 169–87.Google Scholar
Sparks, R. S. J., & Walker, G. P. L., 1977. The significance of the vitric-enriched air-fall ashes associated with crystal-enriched ignimbrite. Journal of Volcanology and Geothermal Research 2, 329–41.Google Scholar
Sparks, R. S. J., & Wright, J. V., 1979. Welded air-fall tuffs. In Ash flow tuffs (eds Chapin, C. E. and Elston, W. E.), pp. 155–66. Geological Society of America Special Paper no. 180, 155–66.Google Scholar
Thqmas, R. M. E., & Sparks, R. S. J., 1992. Cooling of tephra during fallout from eruption columns. Bulletin of Volcanology 54, 542–53.CrossRefGoogle Scholar
Walker, G. P. L., 1981. Plinian eruptions and their products. Bulletin Volcanologique 44, 223–40.Google Scholar
Walker, G. P. L., 1984. Downsag calderas, ring faults, caldera sizes and incremental caldera growth. Journal of Geophysical Research 89, 8407–16.CrossRefGoogle Scholar
Walker, G. P. L., 1985. Origin of coarse lithic breccias near ignimbrite source vents. Journal of Volcanology and Geothermal Research 25, 157–72.Google Scholar
Williams, H., 1941. Calderas and their origin. Bulletin of the Department of Geological Sciences, University of California 25, 239346.Google Scholar
Williams, H., & McBirney, A. R., 1970. Volcanology. San Francisco: Freeman, Cooper & Co., 397 pp.Google Scholar
Wolff, J. A., & Storey, M., 1984. zoning in highly alkaline magma bodies. Geological Magazine 121, 563–75.Google Scholar
Wolff, J. A., & Wright, J. V., 1981. Rheomorphism of welded tuffs. Journal of Volcanology and Geothermal Research 10, 1334.Google Scholar