Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-24T16:23:36.088Z Has data issue: false hasContentIssue false

Spilites, keratophyres, and the igneous spectrum

Published online by Cambridge University Press:  01 May 2009

C. J. Hughes*
Affiliation:
Department of Geology, Memorial University of Newfoundland, St John's, Newfoundland, Canada

Summary

Although the structures and textures of spilites and keratophyres are comparable to those of fresh lavas, recent work has established that they did not acquire their present mineralogy at the time of extrusion. Furthermore, the compositions of many analyzed samples of spilites and keratophyres are shown to lie outside a ‘spectrum’ of compositions of all comparable fresh igneous rocks. A later metamorphism has therefore been responsible for their formation and has commonly been accompanied by metasomatism. This possibility of later metasomatism must be appreciated before conclusions are drawn that are based upon analysis of rocks of a spilitic or keratophyric mineralogy. This applies to age-dating and to analytically based petrographic and petrogenetic conclusions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1972

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amstutz, G. C. 1968. Les laves spilitiques et leurs gîtes minéraux. Geol. Rdsch. 57, 936–54.CrossRefGoogle Scholar
Battey, M. H. 1955. Alkali metasomatism and the petrology of some keratophyres. Geol. Mag. 92, 104–26.CrossRefGoogle Scholar
Cann, J. R. 1969. Spilites from the Carlsberg Ridge, Indian Ocean. J. Petrology 10, 119.CrossRefGoogle Scholar
Carmichael, I. S. E. 1964. The petrology of Thingmuli, a Tertiary volcano in Eastern Iceland. J. Petrology 5, 435–60.CrossRefGoogle Scholar
Dewey, H. & Flett, J. S. 1911. Some British pillow-lavas and the rocks associated with them. Geol. Mag. 8, 202–9 and 241–8.CrossRefGoogle Scholar
Donnelly, T. W. 1966. Geology of St. Thomas and St. John, U.S. Virgin Islands. Mem. geol. Soc. Am. 98, 85176.Google Scholar
Eskola, P. 1937. An experimental illustration of the spilite reaction. Bull. Comm. géol. Finl. 119, 61–8.Google Scholar
Fairburn, H. W., Bottino, M. L., Pinson, W. H. & Hurley, P. M. 1966. Whole rock age and initial Sr87/Sr86 of volcanics underlying fossiliferous Lower Cambrian in the Atlantic Provinces of Canada. Can. J. Earth Sci. 3, 509–21.CrossRefGoogle Scholar
Gilluly, J. 1935. Keratophyres of eastern Oregon and the spilite problem. Am. J. Sci. 229, 225–52 and 336–52.CrossRefGoogle Scholar
Hamilton, Warren. 1965. The geology and petrogenesis of the Island Park Caldera. Prof. Pap. U.S. geol. Surv. 504-C. 37 pp.Google Scholar
Hart, R. 1970. Chemical exchange between sea water and deep ocean basalts. Earth Planet. Sci. Letters 9, 269–79.CrossRefGoogle Scholar
Hatch, F. H., Wells, A. K. & Wells, M. K. 1961. Petrology of the igneous rocks. Thomas Murby and Co., London. 515 pp.Google Scholar
Hekinian, R. 1971. Petrological and geochemical study of spilites and associated rocks from St. John, U.S. Virgin Islands. Bull. geol. Soc. Am. 82, 659–82.CrossRefGoogle Scholar
Holtedahl, A. 1960. Geology of Norway. I Kommisjon hos Aschehoug, Oslo. 540 pp.Google Scholar
Hughes, C. J. 1970. The Late Precambrian Avalonian orogeny in Avalon, southeast Newfoundland. Am. J. Sci. 269, 183–90.CrossRefGoogle Scholar
Hughes, C. J. & Malpas, J. G. 1971. Metasomatism in the late Precambrian Bull Arm Formation in southeastern Newfoundland: recognition and implications. Proc. geol. Soc. Can. 24, 8593.Google Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 8, 523–48.CrossRefGoogle Scholar
Jacobson, R. R. E., Macleod, W. N., & Black, R. 1958. Ring-complexes in the Younger Granite province of Northern Nigeria. Mem. geol. Soc. Lond. 1, 72 pp.Google Scholar
Johannsen, A. 1937. A descriptive petrography of the igneous rocks. Chicago, University of Chicago Press. 4 volumes.Google Scholar
Joplin, Germaine A. 1964. A petrology of Australian igneous rocks. Angus and Robertson, Sydney. 214 pp.Google Scholar
Kuno, H. 1960. High-alumina basalt. J. Petrology 1, 121–45.CrossRefGoogle Scholar
Larsen, E. S. & Cross, W. 1956. Geology and petrology of the San Juan region, south-western Colorado. Prof. Pap. U.S. geol. Surv. 258, 303 pp.Google Scholar
Leeman, W. P. & Rogers, J. J. W. 1970. Late Cenozoic alkali-olivine basalts of the Basin-Range Province, USA. Contr. Mineral. and Petrol. 25, 124.CrossRefGoogle Scholar
Macdonald, G. A. 1968. Composition and origin of Hawaiian lavas. Mem. geol. Soc. Am. 116, 477522.Google Scholar
Macdonald, G. A. & Katsura, T. 1964. Chemical composition of Hawaiian lavas. J. Petrology 5, 82133.CrossRefGoogle Scholar
Mohr, P. A. 1971. Ethiopian Rift and Plateaus: some volcanic petro-chemical differences. J. geophys. Res. 76, 1967–84.CrossRefGoogle Scholar
Moore, J. G. 1965. Petrology of deep-sea basalt near Hawaii. Am. J. Sci. 263, 4052.CrossRefGoogle Scholar
Nicholls, G. D. 1958. Autometasomatism in the Lower Spilites of the Builth Volcanic Series. Q. Jl geol. Soc. Lond. 114, 137–62.CrossRefGoogle Scholar
Noble, D. C. 1965. Gold Flat Member of the Thirsty Canyon Tuff—a Pantellerite ashflow sheet in Southern Nevada. Prof. Pap. U.S. geol. Surv. 525-B, 8590.Google Scholar
Nockolds, S. R. 1954. Average chemical composition of some igneous rocks. Bull. geol. Soc. Am. 65, 1007–32.CrossRefGoogle Scholar
Orville, P. M. 1963. Alkali ion exchange between vapor and feldspar phases. Am. J. Sci. 261, 201–37.CrossRefGoogle Scholar
Papezik, V. S. 1970. Petrochemistry of volcanic rocks of the Harbour Main Group, Avalon Peninsula, Newfoundland. Can. J. Earth Sci. 7, 1485–98.CrossRefGoogle Scholar
Smith, R. E. 1968. Redistribution of major elements in the alteration of some basic lavas during burial metamorphism. J. Petrology 9, 191219.CrossRefGoogle Scholar
Sundius, N. 1930. On the spilitic rocks. Geol. Mag. 67, 117.CrossRefGoogle Scholar
Turner, F. J. & Verhoogen, J. 1960. Igneous and metamorphic petrology. McGraw-Hill Book Co, New York. 694 pp.Google Scholar
Vallance, T. G. 1960. Concerning spilites. Proc. Linn. Soc. N.S.W. 85, 852.Google Scholar
Vallance, T. G. 1965. On the chemistry of pillow lavas and the origin of spilites. Mineralog. Mag. 34, 471–81.Google Scholar
Vallance, T. G. 1969. Spilites again: some consequences of the degradation of basalts. Proc. Linn. Soc. N.S.W. 94, 851.Google Scholar
Wells, A. K. 1923. The nomenclature of the spilitic suite. Part II. The problem of spilites. Geol. Mag. 60, 6274.CrossRefGoogle Scholar
Wise, W. S. 1969. Geology and petrology of the Mt. Hood area: a study of High Cascade volcanism. Bull. geol. Soc. Am. 80, 9691006.CrossRefGoogle Scholar