Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T05:46:16.179Z Has data issue: false hasContentIssue false

Sinuous stromatolites of the Chandi Formation, Chattisgarh Basin, India: their origin and implications for Mesoproterozoic seawater

Published online by Cambridge University Press:  15 September 2021

Mirosław Słowakiewicz*
Affiliation:
Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089Warszawa, Poland Institute of Geology and Petroleum Technologies, Kazan Federal University, Kremlovskaya 18, 420008Kazan, Russia
Amlan Banerjee
Affiliation:
Geological Studies Unit, Indian Statistical Institute, Kolkata700108, India
Sarbani Patranabis-Deb
Affiliation:
Geological Studies Unit, Indian Statistical Institute, Kolkata700108, India
Gautam Kumar Deb
Affiliation:
Department of Geology, Presidency University, Kolkata, India
Maurice E. Tucker
Affiliation:
School of Earth Sciences, University of Bristol, BS8 1RJ, UK
*
Author for correspondence: Mirosław Słowakiewicz, Email: [email protected]

Abstract

Remnants of some of the planet’s most ancient life forms, stromatolites in the late Mesoproterozoic sea of the Chattisgarh Basin, India, preserve a conspicuous sinuous pattern. They occur as successive biostromes, 10–30 cm thick, separated by 2–5-cm-thick marly layers and discrete bioherms up to several metres thick and 20 m across. Stromatolite columns in the Chandi Formation are 5–10 cm high, sinuous, inclined and straight, with both branched and non-branched types. These stromatolites are composed of calcite micrite and show well defined light and dark laminae with evidence of erosion between lamina sets. The column sinuosity probably originated as a response to changes in direction and strength of currents. Successive flat beds of stromatolite (biostromes), separated by marl/clay horizons, impart a rhythmic pattern to the succession. The Chandi sinuous stromatolite columns resemble those occurring in China, North America and Siberia, of a comparable age, suggesting that similar marine conditions of stromatolite formation might have been operating in the late Mesoproterozoic seas worldwide. However, the petrographic and sedimentological analyses of these stromatolites indicate their development through in situ production of carbonate with some trapping and binding of detrital sediment. As a result of the presence of terrigenous material within the stromatolites, whole-rock geochemical analyses for trace elements and rare earth elements cannot be used for interpretation of seawater chemistry and the redox conditions at the time.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Awramik, SM and Riding, R (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proceedings of the National Academy of Sciences 85(5), 1327.CrossRefGoogle ScholarPubMed
Awramik, SM and Sprinkle, J (1999) Proterozoic stromatolites: The first marine evolutionary biota. Historical Biology 13(4), 241–53.CrossRefGoogle Scholar
Awramik, SM and Vanyo, JP (1986) Heliotropism in modern stromatolites. Science 231(4743), 1279–81.CrossRefGoogle ScholarPubMed
Bartley, JK and Kah, LC (2004) Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32(2), 129–32.CrossRefGoogle Scholar
Bartley, JK, Kah, LC, Frank, TD and Lyons, TW (2015) Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: microbial growth, lithification, and implications for coniform stromatolites. Geobiology 13(1), 1532.CrossRefGoogle ScholarPubMed
Bartley, JK, Knoll, AH, Grotzinger, JP and Sergeev, VN (2000) Lithification and fabric genesis in precipitated stromatolites and associated peritidal carbonates Mesoproterozoic Billyakh Group, Siberia. SEPM Special Publication 67, 5973.Google Scholar
Beukes, NJ (1987) Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, Southern Africa. Sedimentary Geology 54(1), 146.CrossRefGoogle Scholar
Bickford, ME, Basu, A, Mukherjee, A, Hietpas, J, Schieber, J, Patranabis-Deb, S, Kumar Ray, R, Guhey, R, Bhattacharya, P and Dhang, PC (2011a) New U-Pb SHRIMP zircon ages of the Dhamda tuff in the Mesoproterozoic Chhattisgarh basin, peninsular India: stratigraphic implications and significance of a 1-Ga thermal-magmatic event. Journal of Geology 119(5), 535–48.CrossRefGoogle Scholar
Bickford, ME, Basu, A, Patranabis-Deb, S, Dhang, PC and Schieber, J (2011b) Depositional history of the Chhattisgarh basin, Central India: constraints from new SHRIMP zircon ages. Journal of Geology 119(1), 3350.CrossRefGoogle Scholar
Cecile, MP and Campbell, FHA (1978) Regressive stromatolite reefs and associated facies, middle Goulburn Group (Lower Proterozoic) in Kilohigok Basin, NWT: an example of environmental control of stromatolite form. Bulletin of Canadian Petroleum Geology 26(2), 237–67.Google Scholar
Chaudhuri, A (1970) Precambrian stromatolites in the Pranhita-Godavari Valley (South India). Palaeogeography, Palaeoclimatology, Palaeoecology 7(4), 309–40.CrossRefGoogle Scholar
Chaudhuri, AK, Saha, D, Deb, GK, Patranabis Deb, S, Kanti Mukherjee, M and Ghosh, G (2002) The Purana basins of southern cratonic province of India - a case for Mesoproterozoic fossil rifts. Gondwana Research 5(1), 2333.CrossRefGoogle Scholar
Cloud, PE and Semikhatov, MA (1969) Proterozoic stromatolite zonation. American Journal of Science 267(9), 1017–61.CrossRefGoogle Scholar
Corkeron, M, Webb, GE, Moulds, J and Grey, K (2012) Discriminating stromatolite formation modes using rare earth element geochemistry: Trapping and binding versus in situ precipitation of stromatolites from the Neoproterozoic Bitter Springs Formation, Northern Territory, Australia. Precambrian Research 212–213, 194206.CrossRefGoogle Scholar
Das, DP, Kundu, A, Das, N, Dutta, DR, Kumaran, K, Ramamurthy, S, Thangavelu, C and Rajaiya, V (1992) Lithostratigraphy and sedimentation of Chattisgarh basin. Indian Minerals 46, 271–88.Google Scholar
Das, K, Yokoyama, K, Chakraborty, PP and Sarkar, A (2009) Basal tuffs and contemporaneity of the Chattisgarh and Khariar basins based on new dates and geochemistry. Journal of Geology 117(1), 88102.CrossRefGoogle Scholar
Das, P, Das, K, Chakraborty, PP and Balakrishnan, S (2011) 1420 Ma diabasic intrusives from the Mesoproterozoic Singhora Group, Chhattisgarh Supergroup, India: Implications towards non-plume intrusive activity. Journal of Earth System Science 120(2), 223–36.CrossRefGoogle Scholar
Dill, RF, Shinn, EA, Jones, AT, Kelly, K and Steinen, RP (1986) Giant subtidal stromatolites forming in normal salinity waters. Nature 324(6092), 5558.CrossRefGoogle Scholar
Dutt, NVBS (1964) A suggested succession of Purana formations of southern parts of Chhattisgarh, Madhya Pradesh. Records of the Geological Survey of India 93, 143–48.Google Scholar
Eagan, KE and Liddell, WD (1997) Stromatolite biostromes as bioevent horizons: an example from the Middle Cambrian Ute formation of the eastern Great Basin. In Paleontological Events. Stratigraphic, Ecological, and Evolutionary Implications (eds. Brett, EC and Baird, GC), pp. 285308. New York: Columbia University Press.Google Scholar
Fenton, CL and Fenton, MA (1937) Belt series of the north: stratigraphy, sedimentation, paleontology. GSA Bulletin 48(12), 1873–970.CrossRefGoogle Scholar
Flügel, E (2010) Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Berlin, Heidelberg: Springer, 984 p.Google Scholar
Frantz, CM, Petryshyn, VA and Corsetti, FA (2015) Grain trapping by filamentous cyanobacterial and algal mats: implications for stromatolite microfabrics through time. Geobiology 13(5), 409–23.CrossRefGoogle ScholarPubMed
Frimmel, HE (2009) Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chemical Geology 258(3), 338–53.CrossRefGoogle Scholar
Gebelein, KD (1969) Distribution, morphology, and accretion rate of recent subtidal algal stromatolites, Bermuda. Journal of Sedimentary Research 39, 4969.Google Scholar
George, BG, Ray, JS and Kumar, S (2019) Geochemistry of carbonate formations of the Chhattisgarh Supergroup, central India: implications for Mesoproterozoic global events. Canadian Journal of Earth Sciences 56(3), 335–46.CrossRefGoogle Scholar
Gerdes, G, Klenke, T and Noffke, N (2000) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47(2), 279308.CrossRefGoogle Scholar
Gorokhov, IM, Semikhatov, MA, Arakelyants, MM, Fallick, EA, Mel’nikov, NN, Turchenko, TL, Ivanovskaya, TA, Zaitseva, TS and Kutyavin, EP (2006) Rb-Sr, K-Ar, H-and O-Isotope systematics of the Middle Riphean shales from the Debengda Formation, the Olenek Uplift, North Sibera. Stratigraphy and Geological Correlation 14(3), 260–74.CrossRefGoogle Scholar
Greinert, J, Bohrmann, G and Elvert, M (2002) Stromatolitic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850 m water depth. International Journal of Earth Sciences 91(4), 698711.CrossRefGoogle Scholar
Grey, K and Awramik, SM (2020) Handbook for the study and description of microbialites. Geological Survey of Western Australia, Bulletin 147, 1278.Google Scholar
Grotzinger, JP (1989) Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. SEPM Special Publication 44, 79106.Google Scholar
Grotzinger, JP and James, NP (2000) Precambrian carbonates: evolution of understanding. SEPM Special Publication 67, 322.Google Scholar
Grotzinger, JP and Knoll, AH (1999) Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences 27(1), 313–58.CrossRefGoogle ScholarPubMed
Grotzinger, JP, Watters, WA and Knoll, AH (2000) Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26(3), 334–59.2.0.CO;2>CrossRefGoogle Scholar
Hoffman, P (1967) Algal stromatolites: use in stratigraphic correlation and paleocurrent determination. Science 157(3792), 1043–45.CrossRefGoogle ScholarPubMed
Hofmann, HJ (1969) Stromatolites from the Proterozoic Animikie and Sibley groups, Ontario. Ontario: Geological Survey of Canada, 77 p.CrossRefGoogle Scholar
Hofmann, HJ (1973) Stromatolites: characteristics and utility. Earth-Science Reviews 9(4), 339–73.CrossRefGoogle Scholar
Hofmann, HJ (1976) Graphic representation of fossil stromatoids; new method with improved precision. In Stromatolites (ed. Walter, MR), pp. 1520. Amsterdam: Elsevier, Developments in Sedimentology.CrossRefGoogle Scholar
Horodyski, RJ (1977) Environmental influences on columnar stromatolite branching patterns: examples from the Middle Proterozoic Belt Supergroup. Journal of Paleontology 51(4), 661–71.Google Scholar
Horodyski, RJ (1983) Sedimentary geology and stromatolites of the Middle Proterozoic Belt Supergroup, Glacier National Park, Montana. In Developments and Interactions of the Precambrian Atmosphere, Lithosphere and Biosphere (eds Nagy, B, Weber, R, Guerrero, JC and Schidlowski, M), pp. 283–317. Amsterdam: Elsevier, Developments in Precambrian Geology.CrossRefGoogle Scholar
Jahnert, RJ and Collins, LB (2011) Significance of subtidal microbial deposits in Shark Bay, Australia. Marine Geology 286(1), 106–11.CrossRefGoogle Scholar
Jahnert, RJ and Collins, LB (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Marine Geology 303–306, 115–36.CrossRefGoogle Scholar
Kah, LC, Bartley, JK, Frank, TD and Lyons, TW (2006) Reconstructing sea-level change from the internal architecture of stromatolite reefs: an example from the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada. Canadian Journal of Earth Sciences 43(6), 653–69.CrossRefGoogle Scholar
Kah, LC, Bartley, JK and Stagner, AF (2009) Reinterpreting a Proterozoic enigma: Conophyton-Jacutophyton stromatolites of the Mesoproterozoic Atar Group, Mauritania. In Perspectives in Carbonate Geology (eds Swart, PK, Eberli, GP and McKenzie, JA), pp. 277–95. New York: Wiley-Blackwell, IAS Special Publications. Google Scholar
Kamber, BS, Bolhar, R and Webb, GE (2004) Geochemistry of late Archaean stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental seas. Precambrian Research 132(4), 379–99.CrossRefGoogle Scholar
Kamber, BS, Webb, GE and Gallagher, M (2014) The rare earth element signal in Archaean microbial carbonate: information on ocean redox and biogenicity. Journal of the Geological Society 171(6), 745–63.CrossRefGoogle Scholar
Kaźmierczak, J, Coleman, ML, Gruszczyński, M and Kempe, S (1996) Cyanobacterial key to the genesis of micritic and peloidal limestones in ancient seas. Acta Palaeontologica Polonica 41(4), 319–38.Google Scholar
Kirkham, A and Tucker, ME (2018) Thrombolites, spherulites and fibrous crusts (Holkerian, Purbeckian, Aptian): Context, fabrics and origins. Sedimentary Geology 374, 6984.CrossRefGoogle Scholar
Lan, Z, Zhang, S, Tucker, M, Li, Z and Zhao, Z (2020) Evidence for microbes in early Neoproterozoic stromatolites. Sedimentary Geology 398, 105589.CrossRefGoogle Scholar
Lawrence, MG and Kamber, BS (2006) The behaviour of the rare earth elements during estuarine mixing—revisited. Marine Chemistry 100(1), 147–61.CrossRefGoogle Scholar
Ling, H-F, Chen, X, Li, D, Wang, D, Shields-Zhou, GA and Zhu, M (2013) Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: Implications for oxygenation of coeval shallow seawater. Precambrian Research 225, 110–27.CrossRefGoogle Scholar
Logan, BW, Hoffman, P and Gebelein, CD (1974) Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. AAPG Memoir 22, 140–94.Google Scholar
Moitra, AK (2003) Stromatolite biostratigraphy in the Chhattisgarh basin and possible correlation with the Vindhyan basin. Journal of the Palaeontological Society of India 48, 215–23.Google Scholar
Murray, RW, Buchholtz ten Brink, MR, Gerlach, DC, Russ, GP and Jones, DL (1992) Interoceanic variation in the rare earth, major, and trace element depositional chemistry of chert: Perspectives gained from the DSDP and ODP record. Geochimica et Cosmochimica Acta 56(5), 1897–913.CrossRefGoogle Scholar
Murti, KS (1987) Stratigraphy and sedimentation in Chattisgarh Basin. In Purana Basins of Peninsular India (ed. Radhakrishna, BP), pp. 239–60. Bangalore: Geological Society of India, Memoir no. 6.Google Scholar
Naqvi, SM and Rogers, JJW (1987) Precambrian Geology of India. Oxford: Oxford University Press, 250 p.Google Scholar
Nordeng, SC (1963) Precambrian stromatolites as indicators of polar shift. In Polar Wandering and Continental Drift (ed. Munyan, AC), pp. 131–39. Oklahoma: Society for Sedimentary Goelogy, Special Publication.CrossRefGoogle Scholar
Nothdurft, LD, Webb, GE and Kamber, BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochimica et Cosmochimica Acta 68(2), 263–83.CrossRefGoogle Scholar
Patranabis-Deb, S, Bickford, ME, Hill, B, Chaudhuri, AK and Basu, A (2007) SHRIMP ages of zircon in the uppermost tuff in Chattisgarh Basin in central India require up to ˜500 Ma adjustment in Indian Proterozoic stratigraphy. Journal of Geology 115(4), 407–15.CrossRefGoogle Scholar
Patranabis-Deb, S and Chaudhuri, AK (2008) Sedimentological products and processes in the Mesoproterozoic Chattisgarh basin and contemporary tectonics in Central India. Indian Journal of Petroleum Geology 80, 139–55.Google Scholar
Patranabis-Deb, S, Majumder, T and Khan, S (2018) Lifestyles of the Palaeoproterozoic stromatolite builders in the Vempalle Sea, Cuddapah Basin, India. Journal of Asian Earth Sciences 157, 360–70.CrossRefGoogle Scholar
Patranabis-Deb, S, Słowakiewicz, M, Tucker, ME, Pancost, RD and Bhattacharya, P (2016) Carbonate rocks and related facies with vestiges of biomarkers: Clues to redox conditions in the Mesoproterozoic ocean. Gondwana Research 35, 411–24.CrossRefGoogle Scholar
Planavsky, N and Grey, K (2008) Stromatolite branching in the Neoproterozoic of the Centralian Superbasin, Australia: an investigation into sedimentary and microbial control of stromatolite morphology. Geobiology 6(1), 3345.Google ScholarPubMed
Planavsky, NJ, McGoldrick, P, Scott, CT, Li, C, Reinhard, CT, Kelly, AE, Chu, X, Bekker, A, Love, GD and Lyons, TW (2011) Widespread iron-rich conditions in the mid-Proterozoic ocean. Nature 477(7365), 448–51.CrossRefGoogle ScholarPubMed
Playford, PE and Cockbain, AE (1969) Algal stromatolites: deepwater forms in the Devonian of Western Australia. Science 165(3897), 1008–10.CrossRefGoogle ScholarPubMed
Playford, PE and Cockbain, AE (1976) Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia. In Stromatolites (ed. Walter, MR), pp. 389411. Amsterdam: Elsevier, Developments in Sedimentology. Google Scholar
Poulton, SW and Canfield, DE (2011) Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements 7, 107–12.CrossRefGoogle Scholar
Poulton, SW, Fralick, PW and Canfield, DE (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience 3(7), 486–90.CrossRefGoogle Scholar
Qu, Y, Xie, G and Gong, Y (2004) Relationship between Earth-Sun-Moon 1000 Ma ago: Evidence from the stromatolites. Chinese Science Bulletin 49(21), 2288–95.CrossRefGoogle Scholar
Riding, R (2008) Abiogenic, microbial and hybrid authigenic carbonate crusts: components of Precambrian stromatolites. Geologia Croatica 61(2–3), 73103.Google Scholar
Riding, R, Braga, JC and Martin, JM (1991) Oolite stromatolites and thrombolites, Miocene, Spain: analogues of Recent Bahamian examples. Sedimentary Geology 71, 121–27.CrossRefGoogle Scholar
Riding, R and Tomás, S (2006) Stromatolite reef crusts, Early Cretaceous, Spain: bacterial origin of in situ-precipitated peloid microspar? Sedimentology 53(1), 2334.CrossRefGoogle Scholar
Semikhatov, MA, Gebelein, CD, Cloud, P, Awramik, SM and Benmore, WC (1979) Stromatolite morphogenesis—progress and problems. Canadian Journal of Earth Sciences 16(5), 9921014.CrossRefGoogle Scholar
Semikhatov, MA and Raaben, ME (2000) Proterozoic stromatolite taxonomy and biostratigraphy. In Microbial Sediments (eds. Riding, RE and Awramik, SM), pp. 295306. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
Serebryakov, SN (1976) Biotic and abiotic factors controlling the morphology of Riphean stromatolites. In Stromatolites (ed. Walter, MR), pp. 321–36. Amsterdam: Elsevier, Developments in Sedimentology. Google Scholar
Shapiro, RS (2007) Stromatolites: A 3.5-billion-year ichnologic record. In Trace Fossils (ed. Miller, W.), pp. 382–90. Amsterdam: Elsevier.CrossRefGoogle Scholar
Shapiro, RS, Aalto, KR, Dill, RF and Kenny, R (1995) Stratigraphic setting of a subtidal stromatolite field, Iguana Cay, Exumas, Bahamas. In Terrestrial and Shallow Marine Geology of the Bahamas and Bermuda. Boulder: Geological Society of America.Google Scholar
Singh, VK and Babu, R (2013) Neoproterozoic chert permineralized silicified microbiota from the carbonate facies of Raipur Group, Chhattisgarh Basin, India: their biostratigraphic significance. Special Publication of Geological Society of India 1, 449–68.Google Scholar
Singh, VK and Sharma, M (2016) Mesoproterozoic organic-walled microfossils from the Chaporadih Formation, Chandarpur Group, Chhattisgarh Supergroup, Odisha, India. Journal of the Palaeontological Society of India 61(1), 7584.Google Scholar
Southgate, PN (1989) Relationships between cyclicity and stromatolite form in the Late Proterozoic Bitter Springs Formation, Australia. Sedimentology 36(2), 323–39.CrossRefGoogle Scholar
Tewari, VC and Tucker, ME (2011) Ediacaran Krol carbonates of the Lesser Himalaya, India: Stromatolitic facies, depositional environment and diagenesis. In Stromatolites: Interaction of Microbes with Sediments (eds Tewari, V and Seckbach, J), pp. 133–56. Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
Tosti, F and Riding, R (2017a) Current molded, storm damaged, sinuous columnar stromatolites: Mesoproterozoic of northern China. Palaeogeography, Palaeoclimatology, Palaeoecology 465, 93102.CrossRefGoogle Scholar
Tosti, F and Riding, R (2017b) Fine-grained agglutinated elongate columnar stromatolites: Tieling Formation, ca 1420 Ma, North China. Sedimentology 64(4), 871902.CrossRefGoogle Scholar
Tribovillard, N, Algeo, TJ, Lyons, T and Riboulleau, A (2006) Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232(1), 1232.CrossRefGoogle Scholar
Turekian, KK and Wedepohl, KH (1961) Distribution of the elements in some major units of the Earth’s crust. GSA Bulletin 72(2), 175–92.CrossRefGoogle Scholar
Vanyo, JP and Awramik, SM (1982) Length of day and obliquity of the ecliptic 850 Ma ago: Preliminary results of a stromatolite growth model. Geophysical Research Letters 9(10), 1125–28.CrossRefGoogle Scholar
Vanyo, JP and Awramik, SM (1985) Stromatolites and earth—sun—moon dynamics. Precambrian Research 29(1), 121–42.CrossRefGoogle Scholar
Viehmann, S, Hohl, SV, Kraemer, D, Bau, M, Walde, DHG, Galer, SJG, Jiang, S-Y and Meister, P (2019) Metal cycling in Mesoproterozoic microbial habitats: Insights from trace elements and stable Cd isotopes in stromatolites. Gondwana Research 67, 101–14.CrossRefGoogle Scholar
Walter, MR, Grotzinger, JP and Schopf, JW (1992) Proterozoic stromatolites. In The Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, JW and Klein, C), pp. 253–85. Cambridge: Cambridge University Press.Google Scholar
Wang, X, Zhang, S, Wang, H, Bjerrum, CJ, Hammarlund, EU, Haxen, ER, Su, J, Wang, Y and Canfield, DE (2017) Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. American Journal of Science 317(8), 861900.CrossRefGoogle Scholar
Webb, GE and Kamber, BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochimica et Cosmochimica Acta 64(9), 1557–65.CrossRefGoogle Scholar
Zhang, S, Wang, X, Wang, H, Bjerrum, CJ, Hammarlund, EU, Costa, MM, Connelly, JN, Zhang, B, Su, J and Canfield, DE (2016) Sufficient oxygen for animal respiration 1,400 million years ago. Proceedings of the National Academy of Sciences 113(7), 1731.CrossRefGoogle ScholarPubMed
Supplementary material: File

Słowakiewicz et al. supplementary material

Słowakiewicz et al. supplementary material

Download Słowakiewicz et al. supplementary material(File)
File 141.8 KB