Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T06:24:08.418Z Has data issue: false hasContentIssue false

The significance of iron-stained foraminifera off SE Trinidad, West Indies, western central Atlantic Ocean

Published online by Cambridge University Press:  10 February 2010

BRENT WILSON*
Affiliation:
Petroleum Geoscience Programme, Department of Chemical Engineering, The University of the West Indies, St Augustine, Trinidad and Tobago
*

Abstract

Eleven samples of seafloor sediment were taken from water depths of 78–90 m within the Savonette Field, off SE Trinidad, western Atlantic Ocean. This surface sediment is relict, having been deposited during an early Holocene transgression. The samples yielded much iron-stained quartz and a rich assemblage of dead foraminifera, of which 75% of planktonic foraminifera were stained with iron, as was 66.5% of the calcareous benthonic foraminiferal assemblage. The fauna, both iron-stained and unstained, was dominated by Cibicidoides ex. gr. pseudoungerianus, and is concluded, despite the proximity of the Orinoco Delta, to be equivalent to a relict Cibicidoides biofacies in carbonate-rich areas of the Gulf of Mexico. Staining was by limonite and hematite. Differing percentages of calcareous benthonic species had been stained with iron, ANOVA revealing three groups of species within which the mean percentage of iron-stained specimens per sample did not differ: (a) Globocassidulina subglobosa and Hanzawaia concentrica; (b) Amphistegina gibbosa, Cassidulina norcrossi australis Cibicioides ex. gr. pseudoungerianus, C. io, Elphidium translucens and Quinqueloculina lamarckiana; and (c) Eponides antillarum and E. repandus. It is concluded that species differ in their susceptibility to iron staining, and that planktonic foraminifera are more susceptible than most benthonic species. Although waters off northern South America are turbid and the photic zone only ~25 m deep, the relict assemblage contained 8.4% algal symbiont-bearing foraminifera (especially A. gibbosa and E. translucens) that would be limited to the photic zone. These are thought to have lived at a time early in the Holocene transgression when sequestration of sediment within the Orinoco delta rendered the water sufficiently clear for viable populations of symbiont-bearing foraminifera. Should iron-stained foraminifera prove to be restricted to transgressive systems tracts, this would make them a useful sequence stratigraphic tool.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, L. C., Sen Gupta, B. K., McBride, R. A. & Byrnes, M. R. 1997. Reduced seasonality of Holocene climate and pervasive mixing of Holocene marine section: Northeastern Gulf of Mexico. Geology 25, 127–30.2.3.CO;2>CrossRefGoogle Scholar
Andreieff, P., Bouysse, P., Chateauneuf, J. J., Homer, A. L. & Scolari, G. 1971. La couverture sédimentaire meuble du plateau continental exerne de la Bretagne méridionale. Cahiers Océanographique 4, 343–81.Google Scholar
Armentrout, J. M. 1996. High resolution sequence biostratigraphy: examples from the Gulf of Mexico Plio-Pleistocene. In High Resolution Sequence Stratigraphy: Innovations and Applications (eds Howell, J. A. & Aitken, J. F.), pp. 65–86. Geological Society of London, Special Publication no. 104.Google Scholar
Aslan, A., White, W. A., Warne, A. G. & Guevara, E. H. 2003. Holocene evolution of the western Orinoco Delta, Venezuela. Geological Society of America Bulletin 115, 479–98.2.0.CO;2>CrossRefGoogle Scholar
Bandy, O. L. 1956. Ecology of Foraminifera in Northeastern Gulf of Mexico. US Geological Survey Professional Paper 274-G, 179–99.Google Scholar
Bandy, O. L., Ingle, J. C. jr & Resig, J. M. 1965. Foraminiferal trends, Hyperion Outfall, California. Limnology and Oceanography 10, 314–32.CrossRefGoogle Scholar
Batista, D. S., Vilela, C. G. & Koutsoukos, E. A. M. 2007. Influência dos Fatores Ambientais na Preservação da Microfauna de Foraminíferos Bentônicos no Ambiente Recifal dos Parrachos de Maracajaú, RN, Brasil. Anuário do Instituto de Geociências – UFRJ 30, 92103.CrossRefGoogle Scholar
Berger, W. H. 1975. Dissolution of deep-sea carbonates: an introduction. In Dissolution of Deep-Sea Carbonates (eds Sliter, W. V., , A. W. H. & Berger, W. H.), pp. 7–10. Cushman Foundation for Foraminiferal Research, Special Publication no. 13.Google Scholar
Blanchon, P. & Shaw, J. 1995. Reef drowning during the last deglaciation: Evidence for catastrophic sea-level rise and ice-sheet collapse. Geology 23, 48.2.3.CO;2>CrossRefGoogle Scholar
Bornhold, B. D. & Giresse, P. 1985. Glauconitic sediments on the continental shelf off Vancouver Island, British Columbia, Canada. Journal of Sedimentary Petrology 55, 653–64.Google Scholar
Butcher, W. A. & Steinker, D. C. 1979. Fungal and bacterial degradation of the test of Archaias angulatus (Foraminifera). Micron 10, 35–6.Google Scholar
Buzas, M. A., Hayek, L.-A. C. & Culver, S. J. 2007. Community structure of benthic foraminifera in the Gulf of Mexico. Marine Micropaleontology 65, 4353.CrossRefGoogle Scholar
Carr-Brown, B. 1972. The Holocene/Pleistocene contact in the offshore area east of Galeota Point, Trinidad, West Indies. VI Conferencia Geologica Del Caribe, Margarita, Venezuela, pp. 381–97.Google Scholar
Chang, S.-K. 1984. Recent Benthic Foraminifera as a Sedimentary Tool. BENTHOS '83: Second International Symposium on Benthic Foraminifera, Pau, France, pp. 147–51.Google Scholar
Collins, L. S. 1993. Neogene paleoenvironments of the Bocas del Toro Basin, Panama. Journal of Paleontology 67, 699710.CrossRefGoogle Scholar
Conolly, J. R. & Von der Borch, C. C. 1967. Sedimentation and physiography of the sea floor south of Australia. Sedimentary Geology 1, 181220.CrossRefGoogle Scholar
Corliss, B. H. & Chen, C. 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology 16, 716–19.2.3.CO;2>CrossRefGoogle Scholar
Corliss, B. H. & Honjo, S. 1981. Dissolution of deep-sea benthonic foraminifera. Micropaleontology 27, 356–78.CrossRefGoogle Scholar
Culver, S. J. 1988. New Foraminiferal Depth Zonation of the Northwestern Gulf of Mexico. Palaios 3, 6985.CrossRefGoogle Scholar
de Rijk, S., Troelstra, S. R. & Rohling, E. J. 1999. Benthic foraminiferal distribution in the Mediterranean Sea. Journal of Foraminiferal Research 29, 93103.CrossRefGoogle Scholar
de Stigter, H. C., Jorissen, F. J. & van der Zwaan, G. J. 1998. Bathymetric distribution and microhabitat partitioning of live (Rose Bengal stained) benthic Foraminifera along a shelf to bathyal transect in the southern Adriatic Sea. Journal of Foraminiferal Research 28, 4065.Google Scholar
Del Castillo, C. E., Coble, P. G., Morell, J. M., López, J. M. & Corredor, J. E. 1999. Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Marine Chemistry 66, 3551.CrossRefGoogle Scholar
Douglas, R. G., Liestman, J., Walch, C., Blake, G. & Cotton, M. L. 1980. The transition from live to sediment assemblages in benthic foraminifera from the southern California borderland. In Quaternary Depositional Environments of the Pacific Coast (eds Michael, E., Douma, A. H., Colburn, I. P., Douglas, R. G. & Ingle, J. C.), pp. 257–80. Society of Economic Paleontologists and Mineralogists, Pacific Coast Paleogeography Symposium 4.Google Scholar
Drooger, C. W. & Kaasschieter, J. P. 1958. Foraminifera of the Orinoco–Trinidad–Paria Shelf. Report of the Orinoco Shelf Expedition, Verhandlungen Koninklijk Nederland Akademie Wetenschappelijke 4, 1108.Google Scholar
Eisma, D. 1998. Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons. London, UK: Taylor and Francis (CRC Press), 544 pp.Google Scholar
Eisma, D., Augustinus, P. G. E. F. & Alexander, C. 1991. Recent and subrecent changes in the dispersal of Amazon mud. Netherlands Journal of Sea Research 28, 181–92.CrossRefGoogle Scholar
Emery, K. O. 1968. Relict sediments on continental shelves of world. AAPG Bulletin 52, 445–64.Google Scholar
Flugel, E. 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Berlin, Germany: Springer, 976 pp.CrossRefGoogle Scholar
Gross, O. 2002. Sediment interactions of foraminifera: Implication for food degradation and bioturbation processes. Journal of Foraminiferal Research 32, 414–24.CrossRefGoogle Scholar
Hallock, P. 2000. Symbiont-bearing foraminifera: harbingers of global change? Micropaleontology 46, Supplement 1, 95104.Google Scholar
Hofker, J. 1983. Zoological exploration of the continental shelf of Surinam: The foraminifera of the shelf of Surinam and the Guyanas. Zoologische Verhandelingen Uitgegeven door het Rijksmuseum van Natuurlijke Histoire te Leiden 201, 175.Google Scholar
Hohenegger, J. 2000. Inferences on sediment production and transport at carbonate beaches using larger foraminifera. Carbonate Beaches 2000: First International Symposium on Carbonate Sand Beaches, Key Largo, Florida, USA, pp. 112–25.Google Scholar
Hu, C., Montgomery, E. T., Schmitt, R. W. & Muller-Karger, F. E. 2004. The dispersal of the Amazon and Orinoco River water in the tropical Atlantic and Caribbean Sea: Observation from space and S-PALACE floats. Deep-Sea Research II 51, 1151–71.CrossRefGoogle Scholar
Kennett, J. P. 1982. Marine Geology. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 813 pp.Google Scholar
Koldewijn, B. W. 1958. Sediments of the Paria-Trinidad Shelf. The Hague: Mouton & Co., 109 pp.Google Scholar
Kotler, E., Martin, R. E. & Liddell, W. D. 1992. Experimental analysis of abrasion and dissolution resistance of modern reef-dwelling foraminifera; implications for the preservation of biogenic carbonate. Palaios 7, 244–76.CrossRefGoogle Scholar
Lentz, S. J. 1995. Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. Geophysical Research 100, 2391–400.CrossRefGoogle Scholar
Li, C., Jones, B. & Blanchon, P. 1997. Lagoon-shelf sediment exchange by storms – Evidence from foraminiferal assemblages, east coast of Grand Cayman, British West Indies. Journal of Sedimentary Research 67, 1725.Google Scholar
Lyell, C. 1850. Principles of Geology. London: John Murray.Google Scholar
Maiklem, W. R. 1967. Black and Brown Speckled Foraminiferal Sand from the Southern Part of the Great Barrier Reef. Journal of Sedimentary Research 37, 1023–30.CrossRefGoogle Scholar
Martin, R. E. & Liddell, W. D. 1991. Taphonomy of foraminifera in modern carbonate environments: implications for the formation of foraminiferal assemblages. In The Processes of Fossilization (ed. Donovan, S. K.), pp. 170–93. London: Belhaven Press.Google Scholar
Martin, R. E. & Wright, R. C. 1988. Information loss in the transition from life to death assemblages of foraminifera in back-reef environments, Key Largo, Florida. Journal of Paleontology 62, 399410.CrossRefGoogle Scholar
Meade, R. H. 1994. Suspended sediments of the modern Amazon and Orinoco Rivers. Quaternary International 21, 2939.CrossRefGoogle Scholar
Milliman, J. D. & Meade, R. H. 1983. Worldwide delivery of sediment to the oceans. Journal of Geology 91, 121.CrossRefGoogle Scholar
Murray, J. W. 1967. Transparent and opaque foraminiferid tests. Journal of Paleontology 41, 791–5.Google Scholar
Murray, J. W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge University Press, 438 pp.CrossRefGoogle Scholar
New Orleans Paleoecologic Committee, G. C. S., S.E.P.M. 1966. Foraminiferal Ecological Zones of the Gulf Coast. Transactions of the Gulf Coast Association of Geological Societies 16, 53–6.Google Scholar
Norton, R. D. 1930. Ecologic relations of some Foraminifera. Scripps Institute of Oceanography Bulletin, Technical Series 2, 331–88.Google Scholar
Orndorff, A. L. & Culver, S. J. 1998. Foraminifera of the early Miocene upper part of the Anahuac Formation from a well in Vermilion Parish, Louisiana, U.S.A. Journal of Foraminiferal Research 28, 286305.Google Scholar
Pekar, S. F. & Kominz, M. A. 2001. Two-dimensional paleoslope modeling: a new method for estimating water depths of benthic foraminiferal biofacies and paleoshelf margins. Journal of Sedimentary Research 71, 608–20.CrossRefGoogle Scholar
Phleger, F. B. & Parker, F. L. 1951. Foraminifera Species. Ecology of Foraminifera, Northwest Gulf of Mexico. Geological Society of America Memoir 46, 164.Google Scholar
Poag, W. C. 1973. Late Quaternary sea levels in the Gulf of Mexico. Transactions of the Gulf Coast Association of Geological Societies 23, 394400.Google Scholar
Poag, W. C. 1981. Ecologic Atlas of Benthic Foraminifera of the Gulf of Mexico. Woods Hole: Hutchinson Ross Publishing Company, 175 pp.Google Scholar
Prothero, D. R. & Schwab, F. 1996. Sedimentary geology: An Introduction to Sedimentary Rocks and Stratigraphy. New York: W. H. Freeman, 575 pp.Google Scholar
Reiss, Z. & Hottinger, L. 1984. The Gulf of Aqaba: Ecological Micropaleontology. Berlin: Springer-Verlag, 354 pp.CrossRefGoogle Scholar
Seiglie, G. A. 1970. The distribution of foraminifers in the Yabucoa Bay, southeastern Puerto Rico, and its paleoecological significance. Revista Espanola de Micropaleontología 2, 183208.Google Scholar
Sen Gupta, B. K., Pujos, M., Pons, J.-C., Galluzo, J. J., Aharon, P. & Parra, M. 1991. Micropaleontological, Mineralogical, and Geochemical Record in Late Quaternary Cores from Abyssal Grenada Basin. Geo-Marine Letters 11, 28.CrossRefGoogle Scholar
Shepard, F. P. 1932. Sediments of the continental shelves. Geological Society of America Bulletin 43, 1017–39.CrossRefGoogle Scholar
Stather, J. W. 1912. Shelly Clay Dredged from the Dogger Bank. Quarterly Journal of the Geological Society of London 68, 324–7.CrossRefGoogle Scholar
Swift, D. J. P., Stanley, D. J. & Curray, J. R. 1971. Relict Sediments on Continental Shelves: A Reconsideration. Journal of Geology 79, 322–46.CrossRefGoogle Scholar
Tett, P. 1990. The Photic Zone. In Light and Life in the Sea (eds Herring, P. J., Campbell, A. K., Whitfield, M. & Maddock, L.), pp. 5987. Cambridge University Press.Google Scholar
van Andel, T. H. 1967. The Orinoco Delta. Journal of Sedimentary Research 37, 297310.Google Scholar
Van Der Zwaan, G. J. & Jorissen, F. J. 1991. Biofacial patterns in river-induced shelf anoxia. In Modern and Ancient Continental Shelf Anoxia (eds Tyson, R. V. & Pearson, T. H.), pp. 6582. Geological Society of London, Special Publication no. 58.Google Scholar
Vilela, C. G. 2003. Taphonomy of benthic foraminiferal tests of the Amazon Shelf. Journal of Foraminiferal Research 33, 132–43.CrossRefGoogle Scholar
Wetmore, K. L. 1987. Correlations between test strength, morphology and habitat in some benthic foraminifera from the coast of Washington. Journal of Foraminiferal Research 17, 113.CrossRefGoogle Scholar
Wilson, B. 2003. Foraminifera and Paleodepths in a Section of the Early to Middle Miocene Brasso Formation, Central Trinidad. Caribbean Journal of Science 39, 209–14.Google Scholar
Wilson, B. 2006 a. The environmental significance of Archaias angulatus (Miliolida, Foraminifera) in sediments around Nevis, West Indies. Caribbean Journal of Science 42, 20–3.Google Scholar
Wilson, B. 2006 b. Trouble in Paradise? A comparison of 1953 and 2005 benthonic foraminiferal seafloor assemblages at the Ibis Field, offshore eastern Trinidad, West Indies. Journal of Micropalaeontology 25, 157–64.CrossRefGoogle Scholar
Wilson, B. 2007. Recent Ostracoda of the Coconut and Mahogany Fields, Offshore SE Trinidad. Caribbean Journal of Science 43, 181–8.CrossRefGoogle Scholar
Wilson, B. 2008. Distributions of ostracod (Crustacea) biofacies on the continental shelf off south-east Trinidad, western central Atlantic Ocean, suggest the location of an offshore river-induced front within the Orinoco Plume. Senckenbergiana Lethaea 88, 199211.CrossRefGoogle Scholar
Yu, S.-Y., Berglund, B. E., Sandgren, P. & Lambeck, K. 2007. Evidence for a rapid sea-level rise 7600 yr ago. Geology 35, 891–4.CrossRefGoogle Scholar
Supplementary material: PDF

Wilson supplementary material

Apppendix 1.pdf

Download Wilson supplementary material(PDF)
PDF 94.6 KB
Supplementary material: PDF

Wilson supplementary material

Apppendix 2.pdf

Download Wilson supplementary material(PDF)
PDF 93.6 KB