Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T01:21:46.609Z Has data issue: false hasContentIssue false

The Shuram–Wonoka event recorded in a high-grade metamorphic terrane: insight from the Scandinavian Caledonides

Published online by Cambridge University Press:  14 December 2007

V. A. MELEZHIK*
Affiliation:
Geological Survey of Norway, N-7491 Trondheim, Norway
D. ROBERTS
Affiliation:
Geological Survey of Norway, N-7491 Trondheim, Norway
A. E. FALLICK
Affiliation:
Scottish Universities Environmental Research Centre, G75 0QF East Kilbride, Glasgow, Scotland, UK
I. M. GOROKHOV
Affiliation:
Institute of Precambrian Geology and Geochronology, nab. Makarova, 2, 199034 St Petersburg, Russia
*
Author for correspondence: [email protected]

Abstract

An approximately 250 m thick polydeformed and polymetamorphosed, isotopically unusual, variegated marble (locally termed the ‘Leivset marble’) shows a great lateral extent in the Scandinavian Caledonides. Its extremely 13C-depleted primary nature (−7.9±1.2‰ on average, n=93) makes the Leivset marble unique. This, together with a high Sr content (up to 8740 ppm) that buffered 87Sr/86Sr ratios between 0.70802 and 0.70872, suggests correlation with the worldwide Shuram–Wonoka isotopic event occurring within the 600–550 Ma time interval during the Ediacaran (Vendian) period. Despite a high-grade deformation and metamorphism, the Leivset marble has retained its original carbon and strontium isotope ratios. A combination of the variegated colour with unusually low δ13Ccarb can potentially be used for stratigraphic correlations in high-grade, non-fossiliferous, marble-dominated terranes across the Caledonian orogenic belt in Baltica and Laurentia. Isotope chemostratigraphy has identified a prominent cryptic stratigraphic discontinuity and suggests that the Ediacaran Leivset marble was tectonically juxtaposed above low-grade, Llandovery-age, fossiliferous marbles during the Scandian orogeny.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, A. J. & Fallick, A. E. 1988. Evidence for CO2 infiltration in granulite-facies marbles from Lofoten-Vesteralen, Norway. Earth and Planetary Science Letters 91, 132–40.CrossRefGoogle Scholar
Baker, A. J. & Fallick, A. E. 1989 a. Evidence from Lewisian limestone for isotopically heavy carbon in two-thousand-million-year-old sea water. Nature 337, 352–4.Google Scholar
Baker, A. J. & Fallick, A. E. 1989 b. Heavy carbon in two-billion-year-old marbles from Lofoten-Vesterålen, Norway: Implications for the Precambrian carbon cycle. Geochimica et Cosmochimica Acta 53, 1111–15.Google Scholar
Banner, J. L. & Hanson, G. N. 1990. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochimica et Cosmochimica Acta 54, 3123–37.CrossRefGoogle Scholar
Bjørlykke, A. & Olaussen, S. 1981. Silurian sediments, volcanics and mineral deposits in the Sagelvvatn area, Troms, North Norway. Norges Geologiske Undersøkelse 365, 138.Google Scholar
Boulvais, P., Fourcade, S., Gruau, G., Moine, B. & Cuney, M. 1998. Persistence of pre-metamorphic C and O isotopic signatures in marbles subject to Pan-African granulite-facies metamorphism and U–Th mineralization (Tranomaro, Southeast Madagascar). Chemical Geology 150, 247–62.Google Scholar
Brasier, M., McCarron, G., Tucker, M., Leather, J., Allen, P. & Shields, G. 2000. New U–Pb zircon dates for the Neoproterozoic Chubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology 28, 175–8.Google Scholar
Burns, S. J., Haudenschild, U. & Matter, A. 1994. The strontium isotopic composition of carbonates from the late Precambrian (560–540 Ma) Huqf Group of Oman. Chemical Geology 111, 269–82.Google Scholar
Burns, S. J. & Matter, A. 1993. Carbon isotopic record of the latest Proterozoic from Oman. Eclogae Geologicae Helvetiae 86, 595607.Google Scholar
Calver, C. R. 2000. Isotope stratigraphy of the Ediacaran Neoproterozoic III of the Adelaide Rift Complex, Australia, and the overprint of water column stratification. Precambrian Research 100, 121–50.Google Scholar
Condon, D., Zhu, M., Bowring, S., Wang, W., Yang, A. & Jin, Y. 2005. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–8.CrossRefGoogle ScholarPubMed
Corsetti, F. A. & Kaufman, A. J. 2003. Stratigraphic investigations of carbon isotope anomalies and Neoproterozoic ice age in Death Valley, California. Geological Society of America Bulletin 115, 916–32.CrossRefGoogle Scholar
Corsetti, F. A. & Kaufman, A. J. 2005. The relationship between the Neoproterozoic Noonday Dolomite and the Ibex Formation: new observations and their bearing on ‘snowball Earth’. Earth-Science Reviews 73, 6378.Google Scholar
Fairchild, I. J., Spiro, B. F., Herrington, P. M. & Song, T. 2000. Controls on Sr and C isotope compositions of Neoproterozoic Sr-rich limestones of East Greenland and North China. In Carbonate sedimentation and diagenesis in the evolving Precambrian world (eds Grotzinger, J. P. & James, N. P.), pp. 297–313. Society for Sedimentary Geology, Special Publication no. 67.Google Scholar
Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. 2006. Oxidation of the Ediacaran Ocean. Nature 444, 744–7.Google Scholar
Ghent, E. D. & O'Neil, J. R. 1985. Late Precambrian marbles of unusual carbon-isotope composition, southeastern British Columbia. Canadian Journal of Earth Sciences 22, 324–9.CrossRefGoogle Scholar
Grotzinger, J. P., Bowring, S. A., Saylor, B. Z. & Kaufman, A. J. 1995. Biostratigraphic and geochronological constraints on early animal evolution. Science 270, 598604.CrossRefGoogle Scholar
Halverson, G. P., Dudás, F. Ö., Maloof, A. C. & Bowring, S. A. 2007. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology. doi:10.1016/j.palaeo.2007.02.028, in press.CrossRefGoogle Scholar
Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C. & Rice, A. H. N. 2005. Towards a Neoproterozoic composite carbon isotope record. Geological Society of America Bulletin 117, 11811207.Google Scholar
Jacobsen, S. B. & Kaufman, A. J. 1999. The Sr, C and O isotopic evolution of Neoproterozoic seawater. Chemical Geology 161, 3757.Google Scholar
Jiang, G., Kennedy, M. J. & Christie-Blick, N. 2003. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–6.Google Scholar
Jiang, G. Q., Sohl, L. E. & Christie-Blick, N. 2003. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic implications. Geology 31, 917–20.Google Scholar
Kaufman, A. J., Jacobsen, S. B. & Knoll, A. H. 1993. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and palaeoclimate. Earth and Planetary Science Letters 120, 409–30.CrossRefGoogle Scholar
Kaufman, A. J., Jiang, C., Christie-Blick, N., Banerjee, D. B. & Rai, V. 2006. Stable isotope record of the terminal Neoproterozoic Krol platform in the Lesser Himalayas of northern India. Precambrian Research 147, 156–85.Google Scholar
Le Guerroué, E., Allen, P. A., Cozzi, A., Etienne, J. L. & Fanning, M. 2006. 50 Myr recovery from the largest negative δ13C excursion in the Ediacaran ocean. Terra Nova 18, 147–53.CrossRefGoogle Scholar
Melezhik, V. A., Fallick, A. E. & Pokrovsky, B. G. 2005. Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: the challenges to our understanding of the terrestrial carbon cycle. Precambrian Research 137, 131–65.Google Scholar
Melezhik, V. A., Gorokhov, I. M., Fallick, A. E. & Gjelle, S. 2001 a. Strontium and carbon isotope geochemistry applied to dating of carbonate sedimentation: an example from high-grade rocks of the Norwegian Caledonides. Precambrian Research 108, 267–92.Google Scholar
Melezhik, V. A., Gorokhov, I. M., Fallick, A. E., Roberts, D., Kuznetsov, A. B., Zwaan, B. K. & Pokrovsky, B. G. 2002 a. Isotopic stratigraphy suggests Neoproterozoic ages and Laurentian ancestry for high-grade marbles from the North-Central Norwegian Caledonides. Geological Magazine 139, 375–93.CrossRefGoogle Scholar
Melezhik, V. A., Gorokhov, I. M., Kuznetsov, A. B. & Fallick, A. E. 2001 b. Chemostratigraphy of Neoproterozoic carbonates: implications for ‘blind dating’. Terra Nova 13, 111.Google Scholar
Melezhik, V. A., Roberts, D., Fallick, A. E., Gorokhov, I. M. & Kuznetsov, A. B. 2005. Geochemical preservation potential of high-grade calcite marble versus dolomite marble: implication for isotope chemostratigraphy. Chemical Geology 216, 203–24.Google Scholar
Melezhik, V. A., Roberts, D., Gorokhov, I. M., Fallick, A. E., Zwaan, K. B., Kuznetsov, A. B. & Pokrovsky, B. G. 2002 b. Isotopic evidence for a complex Neoproterozoic to Silurian rock assemblage in the North-Central Norwegian Caledonides. Precambrian Research 114, 5586.Google Scholar
Melezhik, V. A., Zwaan, K. B., Motuza, G., Roberts, D., Solli, A., Fallick, A. E., Gorokhov, I. M. & Kuznetsov, A. B. 2003. New insights into the geology of high-grade Caledonian marbles based on isotope chemostratigraphy. Norwegian Journal of Geology 83, 209–42.Google Scholar
Pell, S. D., McKirdy, D. M., Jansyn, J. & Jenkins, R. J. F. 1993. Ediacarian carbon isotope stratigraphy of South Australia – an initial study. Transactions of Royal Society of South Australia 117, 153–61.Google Scholar
Pokrovsky, B. G. & Gertsev, D. O. 1993. Upper Precambrian carbonates extremely depleted in 13C. Lithology and Mineral Resources 1, 6480.Google Scholar
Pokrovsky, B. G., Melezhik, V. A. & Bujakaite, M. I. 2006 a. Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems. Lithology and Mineral Resources 41, 450–74.Google Scholar
Pokrovsky, B. G., Melezhik, V. A. & Bujakaite, M. I. 2006 b. Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 2. Nature of carbonates with ultralow and ultrahigh δ13C values. Lithology and Mineral Resources 41, 576–87.CrossRefGoogle Scholar
Roberts, D., Heldal, T. & Melezhik, V. A. 2002. Carbonate formations and early NW-directed thrusting in the highest allochthons of the Norwegian Caledonides – evidence of a Laurentian ancestry. Journal of the Geological Society, London 159, 117–20.CrossRefGoogle Scholar
Roberts, D., Nordgulen, Ø. & Melezhik, V. 2007. The Uppermost Allochthon in the Scandinavian Caledonides: from a Laurentian ancestry through Taconian orogeny to Scandian crustal growth on Baltica. In 4-D Framework of Continental Crust (eds Hatcher, Jr, Robert D., Carlson, Marvin P., McBride, John H. & Catalán, José Ramón Martínez), pp. 357–77. doi: 10.1130/2007.1200(18), in press. Geological Society of America Memoir no. 200.Google Scholar
Saylor, B. Z., Kaufman, A. J., Grotzinger, J. P. & Urban, F. 1998. A composite reference section for terminal Proterozoic strata of southern Namibia. Journal of Sedimentary Research 68, 1223–35.Google Scholar
Slagstad, T., Melezhik, V. A., Kirkland, C. L., Zwaan, K. B., Roberts, D., Gorokhov, I. M. & Fallick, A. E. 2006. Carbonate isotope chemostratigraphy suggests revisions to the geological history of the West Finnmark Caledonides, northern Norway. Journal of the Geological Society, London 163, 277–89.Google Scholar
Thomas, C. W., Graham, C. M., Ellam, R. M. & Fallick, A. E. 2004. 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian limestones of Scotland and Ireland: Constraints on depositional ages and time scales. Journal of the Geological Society, London 161, 229–42.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. & Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology 161, 5988.Google Scholar
Wickham, S. M. & Peters, M. T. 1993. High δ13C Neoproterozoic carbonate rocks in western North America. Geology 21, 165–8.2.3.CO;2>CrossRefGoogle Scholar
Yang, J., Sun, W., Wang, Z., Xue, Y. & Tao, X. 1999. Variations in Sr and C isotopes and Ce anomalies in successions from China: evidence for the oxygenation of Neoproterozoic seawater? Precambrian Research 93, 215–33.Google Scholar