Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-26T13:35:30.792Z Has data issue: false hasContentIssue false

The Shackleton Range (East Antarctica): an alien block at the rim of Gondwana?

Published online by Cambridge University Press:  12 December 2016

NICOLE KROHNE*
Affiliation:
University of Bremen, Department of Geosciences, PO Box 330440, D-28334 Bremen, Germany
FRANK LISKER
Affiliation:
University of Bremen, Department of Geosciences, PO Box 330440, D-28334 Bremen, Germany
GEORG KLEINSCHMIDT
Affiliation:
Goethe University Frankfurt, Institute of Geosciences, Altenhöferallee 1, D-60438 Frankfurt/Main, Germany
ANDREAS KLÜGEL
Affiliation:
University of Bremen, Department of Geosciences, PO Box 330440, D-28334 Bremen, Germany
ANDREAS LÄUFER
Affiliation:
Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany
SOLVEIG ESTRADA
Affiliation:
Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, D-30655 Hannover, Germany
CORNELIA SPIEGEL
Affiliation:
University of Bremen, Department of Geosciences, PO Box 330440, D-28334 Bremen, Germany
*
Author for correspondence: [email protected]

Abstract

The Shackleton Range is a truncated Pan-African Orogen situated at the Weddell Sea margin of East Antarctica. It almost exclusively consists of basement rocks exposed at an elevated, escarpment-bound palaeosurface and is covered locally by patchy remnants of Ordovician, Permian and, controversially, Jurassic terrestrial deposits. This inventory does not match the geological record of any other place in Antarctica. Here we reconstruct the Phanerozoic evolution of the Shackleton Range by means of a multi-disciplinary approach combining petrological, geochemical and geochronological data with thermal history models of zircon and apatite fission track (ZFT, AFT) and (U–Th–Sm)/He (AHe) data. Petrographic, geochemical and 40Ar/39Ar analyses of a sedimentary cover sequence identify volcaniclastic rocks related to the Ferrar/Karoo magmatic event. Thermal history modelling of ZFT ages of 160–215 Ma, AFT ages of 124–225 Ma, AHe ages of 95–169 Ma and kinematic proxies in combination with geological information indicates a complex thermal history comprising at least three cooling episodes interrupted by reheating pulses. Thermal history refers to inversion of part of the Carboniferous–Triassic Transantarctic Basin prior to the 180 Ma Ferrar/Karoo Event and formation of an up to 3.4 km deep extensional Jurassic – Early Cretaceous basin due to Weddell Sea rifting. Basin depth was diminished by regional middle Cretaceous stress field changes. Final basin inversion and surface uplift were likely triggered by far-field tectonics and climatic influence. This history represents a typical example for the transition from an active to passive margin setting along the outer rim of Gondwana.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aadland, A. J. & Phoa, R. S. K. (eds) 1981. Geothermal Gradient Map of Indonesia: A Publication of the Indonesian Petroleum Association. Jakarta, Indonesia: Indonesian Petroleum Association.Google Scholar
Barrett, P. J. 1992. The Devonian to Jurassic Beacon Supergroup of the Transantarctic Mountains and correlatives to other places of Antarctica. In The Geology of Antarctica (ed. Tingey, R. J.), pp. 120–52. Oxford University Press, Oxford Monographs on Geology and Geophysics, 17.Google Scholar
Behrendt, J. C. & Cooper, A. 1991. Evidence of rapid Cenozoic uplift of the shoulder escarpment of the Cenozoic West Antarctic rift system and a speculation on possible climate forcing. Geology 19 (4), 315–19.Google Scholar
Boger, S. D. 2011. Antarctica - before and after Gondwana. Gondwana Research 19 (2), 335–71.Google Scholar
Brewer, T. S. 1989. Mesozoic dolerites from Whichaway Nunataks. Antarctic Science 1 (2), 151–5.Google Scholar
Brommer, A. 1998. Strukturelle Entwicklung und Petrogenese des nördlichen Kristallingürtels der Shackleton Range, Antarktis: Proterozoische und Ross-orogene Krustendynamik am Rand des Ostantarktischen Kratons. PhD thesis, Berichte zur Polarforschung, 290, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven, Germany. Published thesis.Google Scholar
Brommer, A. & Henjes-Kunst, F. 1999. Structural investigations and K-Ar geochronology of the northern Herbert Mountains and Mount Sheffield, Shackleton Range, Antarctica. Terra Antartica 6 (3), 279–91.Google Scholar
Brommer, A., Millar, I. L. & Zeh, A. 1999. Geochronology, structural geology and petrology of the northwestern La Grange Nunataks, Shackleton Range, Antarctica. Terra Antartica 6 (3), 269–78.Google Scholar
Brook, D. 1972. Stratigraphy of the Theron Mountains. British Antarctic Survey Bulletin 29, 6789.Google Scholar
Buggisch, W., Bachtadse, V. & Henjes-Kunst, F. 1999. Lithostratigraphy, facies, geochronology and palaeomagnetic data from the Blaiklock Glacier Group, Shackleton Range, Antarctica. Terra Antartica 6 (3), 229–39.Google Scholar
Buggisch, W., Kleinschmidt, G., Höhndorf, A. & Pohl, J. 1994 a. Stratigraphy and facies of sediments and low-grade metasediments in the Shackleton Range, Antarctica. Polarforschung 63 (1), 932.Google Scholar
Buggisch, W., Kleinschmidt, G., Kreuzer, H. & Krumm, S. 1994 b. Metamorphic and structural evolution of the southern Shackleton Range during the Ross Orogeny. Polarforschung 63 (1), 3356.Google Scholar
Chandler, M. A., Rind, D. & Ruedy, R. 1992. Pangaean climate during the Early Jurassic: GCM simulations and the sedimentary record of paleoclimate. Geological Society of America Bulletin 104, 543–59.Google Scholar
Clarkson, P. 1981. Geology of the Shackleton Range: IV. The dolerite dykes. British Antarctic Survey Bulletin 53, 201–12.Google Scholar
Clarkson, P. & Wyeth, R. 1983. Geology of the Shackleton Range: III. The Blaiklock Glacier Group. British Antarctic Survey Bulletin 52, 233–44.Google Scholar
Collinson, J. W., Isbell, J. L., Elliot, D. H., Miller, M. F., Miller, J. M. G. & Veevers, J. J. 1994. Permian-Triassic Transantarctic Basin. In Permian-Triassic Pangean Basins and Foldbelts Along the Panthalassan Margin of Gondwanaland (eds Veevers, J. J. & Powell, C. M.), pp. 173222. Geological Society of America (GSA), Boulder, Memoir no. 184.Google Scholar
Craddock, C. 1972. Antarctic tectonics. In Antarctic Geology and Geophysics (ed. Adie, R. J.), pp. 449–55. Oslo: Universitetsforlaget.Google Scholar
Curtis, M. L. 2001. Tectonic history of the Ellsworth Mountains, West Antarctica: reconciling a Gondwana enigma. Geological Society of America Bulletin 113 (7), 939–58.Google Scholar
Dalziel, I. W. D., Storey, B. C., Garrett, S. W., Grunow, A. M., Herrod, L. D. B. & Pankhurst, R. J. 1987. Extensional tectonics and the fragmentation of Gondwanaland. In Continental Extensional Tectonics (eds Coward, M. P., Dewey, J. F. & Hancock, P. L.), pp. 433–41. Geological Society, London, Special Publication no. 28.Google Scholar
De Paola, N., Holdsworth, R. E., McCaffrey, K. J. W. & Barchi, M. R. 2005. Partitioned transtension: an alternative to basin inversion models. Journal of Structural Geology 27 (4), 607–25.Google Scholar
Dietze, M., Haubrich, F., Klinger, T. & Ullrich, B. 2007. Smectites in the porphyrite from Wurgwitz near Dresden (Saxony, Germany). Geologica Saxonica Journal of Central European Geology 52/53, 97115.Google Scholar
Donelick, R. A., O'Sullivan, P. B. & Ketcham, R. A. 2005. Apatite fission-track analysis. Reviews in Mineralogy and Geochemistry 58 (1), 4994.Google Scholar
Dunkl, I. 2002. TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Computers and Geosciences 28 (1), 312.Google Scholar
Elliot, D. H. 1992. Jurassic magmatism and tectonism associated with Gondwanaland break-up: an Antarctic perspective. In Magmatism and the Causes of Continental Break-up (eds Storey, B. C., Alabaster, T. & Pankhurst, R. J.), pp. 165–84. Geological Society, Special Publication no. 68.Google Scholar
Elliot, D. H., Fanning, C. M. & Hulett, S. R. W. 2015. Age provinces in the Antarctic craton: evidence from detrital zircons in Permian strata from the Beardmore Glacier region, Antarctica. Gondwana Research 28 (1), 152–64.Google Scholar
Elliot, D. H. & Fleming, T. H. 2000. Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28 (6), 539–42.Google Scholar
Elliot, D. H. & Fleming, T. H. 2004. Occurrence and dispersal of magmas in the Jurassic Ferrar Large Igneous Province, Antarctica. Gondwana Research 7 (1), 223–37.Google Scholar
Elliot, D. H., Fleming, T. H., Foland, K.A. & Fanning, C. M. 2007. Jurassic silicic volcanism in the Transantarctic Mountains: was it related to plate margin processes or to Ferrar magmatism. In Online Proceedings of the 10th ISAES (eds Cooper, A. K., Raymond, C. R. et al.). USGS Open-File Report 2007-1047, Antarctica: a Keystone in a changing World, 5 pp.Google Scholar
Elsner, M., Schöner, R., Gerdes, A. & Gaupp, R. 2013. Reconstruction of the early Mesozoic plate margin of Gondwana by U–Pb ages of detrital zircons from northern Victoria Land, Antarctica. In Antarctica and Supercontinent Evolution (Harley, S. L., Fitzsimons, I. C. W. & Zhao, Y.), pp. 211–32. Geological Society, London, Special Publication no. 383.Google Scholar
Farley, K. A. 2002. (U-Th)/He dating: techniques, calibrations, and applications. Reviews in Mineralogy and Geochemistry 47 (1), 819–44.Google Scholar
Farley, K. A., Wolf, R. A. & Silver, L. T. 1996. The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta 60 (21), 4223–9.Google Scholar
Ferris, J. K., Vaughan, A. P. M. & Storey, B. C. 2000. Relics of a complex triple junction in the Weddell Sea embayment, Antarctica. Earth and Planetary Science Letters 178 (3–4), 215–30.Google Scholar
Fitzgerald, P. G., Baldwin, S. L., Webb, L. E. & O'Sullivan, P. B. 2006. Interpretation of (U-Th)/He single grain ages from slowly cooled crustal terranes: a case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology 225 (1–2), 91120.CrossRefGoogle Scholar
Fleming, T. H., Heimann, A., Foland, K. A. & Elliot, D. H. 1997. 40Ar/39Ar geochronology of Ferrar dolerite sills from the Transantarctic Mountains, Antarctica: implications for the age and origin of the Ferrar magmatic province. Geological Society of America Bulletin 109, 533–46.Google Scholar
Flowerdew, M. J., Tyrrell, S., Riley, T. R., Whitehouse, M. J., Mulvaney, R., Leat, P. T. & Marschall, H. R. 2012. Distinguishing East and West Antarctic sediment sources using the Pb isotope composition of detrital K-feldspar. Chemical Geology 292–293 (23), 88102.Google Scholar
Flowers, R. M., Ketcham, R. A., Shuster, D. L. & Farley, K. A. 2009. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta 73 (8), 2347–65.Google Scholar
Fogwill, C. J., Bentley, M. J., Sugden, D. E., Kerr, A. R. & Kubik, P. W. 2004. Cosmogenic nuclides 10Be and 26Al imply limited Antarctic Ice Sheet thickening and low erosion in the Shackleton Range for >1m.y. Geology 32 (3), 265–8.Google Scholar
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C. & Zirizzotti, A. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. The Cryosphere 7, 375–93.Google Scholar
Galbraith, R. F. 1981. On statistical models for fission track counts. Mathematical Geology 13 (6), 471–8.Google Scholar
Gallagher, K. & Brown, R. 1997. The onshore record of passive margin evolution. Journal of the Geological Society, London 154, 451–7.Google Scholar
Garver, J. I., Brandon, M. T., Roden-Tice, M. & Kamp, P. J. J. 1999. Erosional denudation determined by fission-track ages of detrital apatite and zircon. In Exhumation Processes: Normal Faulting, Ductile Flow and Erosion (eds Ring, U., Brandon, M. T., Willett, S. & Lister, G.), pp. 283304. Geological Society of London, Special Publication no. 154.Google Scholar
Golynsky, A. & Aleshkova, N. D. 2000. Regional magnetic anomalies of the Weddell Sea region and their geological significance. Polarforschung 67 (3), 101–17.Google Scholar
Green, P. F. 1981. A new look at statistics in fission-track dating. Nuclear Tracks 5 (1–2), 7786.Google Scholar
Grunow, A. M. 1993. Creation and destruction of Weddell Sea floor in the Jurassic. Geology 21, 647–50.Google Scholar
Grunow, A., Kent, D. V. & Dalziel, I. 1991. New paleomagnetic data from Thurston Island: Implications for the tectonics of West Antarctica and Weddell Sea opening. Journal of Geophysical Research: Solid Earth 96 (B11), 17935–54.Google Scholar
Harrowfield, M., Holdgate, G. R., Wilson, C. J. L. & McLoughlin, S. 2005. Tectonic significance of the Lambert graben, East Antarctica: reconstructing the Gondwanan rift. Geology 33 (3), 197200.Google Scholar
Höfle, H.-C. & Buggisch, W. 1995. Glacial geology and petrography of erratics in the Shackleton Range, Antarctica. Polarforschung 63 (2/3), 183201.Google Scholar
Hofmann, J., Kaiser, G., Klemm, W. & Paech, H.-J. 1980. K-Ar Alter von Doleriten und Metamorphiten der Shackleton Range und der Whichaway-Nunataks, Ost- und Südostumrandung des Filchner-Eisschelfs. Zeitschrift für Geologische Wissenschaften 8 (9), 1227–32.Google Scholar
Hotten, R. 1993. Die mafischen Gänge der Shackleton Range/Antarktika : Petrographie, Geochemie, Isotopengeochemie und Paläomagnetik. [The mafic dykes of the Shackleton Range/Antarctica: petrography, geochemistry, isotope geochemistry and palaeomagnetism.] PhD thesis, Berichte zur Polarforschung,118, RWTH Aachen. Published thesis.Google Scholar
Hotten, R. 1995. Palaeomagnetic studies on mafic dykes of the Shackleton Range, Antarctica, and their geotectonic relevance. Polarforschung 63 (2/3), 123–51.Google Scholar
Huang, X., Gohl, K. & Jokat, W. 2014. Variability in Cenozoic sedimentation and paleo-water depths of the Weddell Sea basin related to pre-glacial and glacial conditions of Antarctica. Global and Planetary Change 118, 2541.Google Scholar
Hübscher, C., Jokat, W. & Miller, H. 1996 a. Crustal structure of the Antarctic continental margin in the eastern Weddell Sea. In Weddell Sea Tectonics and Gondwana Break-up (eds Storey, B. C., King, E. C. & Livermore, R. A.), pp. 165–74. Geological Society of London, Special Publication no. 108.Google Scholar
Hübscher, C., Jokat, W. & Miller, H. 1996 b. Structure and origin of southern Weddell Sea crust; results and implications. In Weddell Sea Tectonics and Gondwana Break-up (eds Storey, B. C., King, E. C. & Livermore, R. A.), pp. 201–11. Geological Society of London, Special Publication no. 108.Google Scholar
Humphreys, B., Kemp, S. J., Lott, G. K., Bermanto, Dharmayanti, D. A. & Samsori, I. 1994. Origin of grain-coating chlorite by smectite transformation: an example from Miocene sandstones, North Sumatra Back-arc Basin, Indonesia. Clay Minerals 29 (4), 681–92.Google Scholar
Hutton, D. H. W. 2009. Insights into magmatism in volcanic margins: bridge structures and a new mechanism of basic sill emplacement – Theron Mountains, Antarctica. Petroleum Geoscience 15 (3), 269–78.Google Scholar
Isbell, J. L., Cole, D. I. & Catuneanu, O. 2008. Carboniferous-Permian glaciation in the main Karoo Basin, South Africa: Stratigraphy, depositional controls, and glacial dynamics. In Resolving the Late Paleozoic Ice Age in Time and Space (eds Fielding, C. R., Frank, T. D. & Isbell, J. L.), pp. 7182. Geological Society of America, Special Paper no. 441.Google Scholar
Jordan, T. A., Ferraccioli, F., Ross, N., Corr, H. F. J., Leat, P. T., Bingham, R. G., Rippin, D. M., Le Brocq, A. M. & Siegert, M. J. 2013. Inland extent of the Weddell Sea rift imaged by new aerogeophysical data. Tectonophysics 585, 137–60.Google Scholar
Ketcham, R. A. 2005. Forward and inverse modeling of low-temperature thermochronometry data. Reviews in Mineralogy and Geochemistry 58 (1), 275314.Google Scholar
King, E. C. 2000. The crustal structure and sedimentation of the Weddell Sea embayment: implications for Gondwana reconstructions. Tectonophysics 327 (3–4), 195212.Google Scholar
Kleinschmidt, G., Buggisch, W. & Flöttmann, T. 1992. Compressional causes for the Early Paleozoic Ross orogen - evidence from Victoria Land and the Shackleton Range. In Recent Progress in Antarctic Earth Science (eds Yoshida, Y., Kaminuma, K. & Shiraishi, K.), pp. 227–33. Tokyo: Terrapub.Google Scholar
Kleinschmidt, G., Buggisch, W., Läufer, A. L., Helferich, S. & Tessensohn, F. 2002. The “Ross orogenic” structures in the Shackleton Range and their meaning for Antarctica. In Antarctica at the Close of a Millennium (eds Gamble, J. A., Skinner, D. N. B. & Henrys, S.), pp. 7583. The Royal Society of New Zealand, Wellington, Bulletin no. 35.Google Scholar
König, M. & Jokat, W. 2006. The Mesozoic breakup of the Weddell Sea. Journal Geophysical Research 111 (B12012), 128.Google Scholar
Kovacs, L. C., Morris, P., Brozena, J. & Tikku, A. 2002. Seafloor spreading in the Weddell Sea from magnetic and gravity data. Tectonophysics 347 (1–3), 4364.Google Scholar
Kristoffersen, Y. & Haugland, K. 1986. Geophysical evidence for the East Antarcitc plate boundary in the Weddell Sea. Nature 322 (6079), 538–41.Google Scholar
Kristoffersen, Y. & Hinz, K. 1991. Evolution of the Gondwana plate boundary in the Weddell Sea area. In Geological Evolution of Antarctica; Proceedings of the Fifth International Symposium on Antarctic Earth Sciences (eds Thomson, M. R. A., Crame, J. A. & Thomson, J. W.), pp. 225–30. Cambridge: Cambridge University Press.Google Scholar
Leat, P. T., Luttinen, A. V., Storey, B. C. & Millar, I. L. 2005. Sills of the Theron Mountains, Antarctica: Evidence for long distance transport of mafic magmas during Gondwana break-up. In Dyke Swarms - Time Markers of Crustal Evolution; 5th International Dyke Conference (IDC-5) (eds Hanski, E., Mertanen, S., Ramo, T. & Vuollo, J.), pp. 183–99. Rovaniemi, Finland, Jul 31–Aug 03. Taylor & Francis.Google Scholar
LeBas, M. J., Lemaitre, R. W., Streckeisen, A. & Zanettin, B. 1986. A chemical classification of volcanic-rocks based on the Total Alkali Silica diagram. Journal of Petrology 27 (3), 745–50.Google Scholar
Leitchenkov, G. L., Miller, H. & Zatzepin, E. N. 1996. Structure and Mesozoic evolution of the eastern Weddell Sea, Antarctica; history of early Gondwana break-up. In Weddell Sea Tectonics and Gondwana Break-up (eds Storey, B. C., King, E. C. & Livermore, R. A.), pp. 175–90. Geological Society of London, Special Publication no. 108.Google Scholar
Lisker, F. & Läufer, A. L. 2013. The Mesozoic Victoria Basin: Vanished link between Antarctica and Australia. Geology 41 (10), 1043–6.Google Scholar
Lisker, F., Schäfer, T. & Olesch, M. 1999. The uplift/denudation history of the Shackleton Range (Antarctica) based on fission-track analyses. Terra Antarctica 6 (3), 345–52.Google Scholar
Livermore, R. A. & Woollett, R. W. 1993. Seafloor spreading in the Weddell Sea and southwest Atlantic since the Late Cretaceous. Earth and Planetary Science Letters 117, 475–95.CrossRefGoogle Scholar
Marsh . 1985. Ice surface and bedrock topography in Coats Land and part of Dronning Maud Land, Antarctica, from satellite imagery. British Antarctic Survey Bulletin 68, 1936.Google Scholar
Martin, A. K. 2007. Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback. Tectonophysics 445 (3–4), 245–72.Google Scholar
Morkel, J., Kruger, S. J. & Vermaak, M. K. G. 2006. Characterization of clay mineral fractions in tuffisitic kimberlite breccias by X-ray diffraction. Journal of The South African Institute of Mining and Metallurgy 106, 397406.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Peters, M. 1989. Die Vulkanite im westlichen und mittleren Neuschwabenland, Vestfjella und Ahlmannryggen, Antarktika. Petrologie, Geochronologie, Paleomagnetismus, Geotektonische Implikationen. PhD thesis, Berichte zur Polarforschung; 61, Alfred-Wegener Institut für Polar- und Meeresforschung, Bremerhaven 1989. Published thesis.Google Scholar
Poole, I., Cantrill, D. & Utescher, T. 2005. A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary. Palaeogeography, Palaeoclimatology, Palaeoecology 222 (1–2), 95121.Google Scholar
Prenzel, J., Lisker, F., Balestrieri, M. L., Läufer, A. & Spiegel, C. 2013. The Eisenhower Range, Transantarctic Mountains: evaluation of qualitative interpretation concepts of thermochronological data. Chemical Geology 352, 176–87.Google Scholar
Prenzel, J., Lisker, F., Elsner, M., Schöner, R., Balestrieri, M. L., Läufer, A. L., Berner, U. & Spiegel, C. 2014. Burial and exhumation of the Eisenhower Range, Transantarctic Mountains, based on thermochronological, sedimentary rock maturity and petrographic constraints. Tectonophysics 630, 113–30.Google Scholar
Purdy, J. W. & Jäger, E. 1976. K–Ar ages on rock-forming minerals from the Central Alps. Memorie degli Istituti di Geologia e Mineralogia dell'Università di Padova, 31 pp.Google Scholar
Rahn, M. K., Brandon, M. T., Batt, G. E. & Garver, J. I. 2004. A zero-damage model for fission-track annealing in zircon. American Mineralogist 89 (4), 473 pp.Google Scholar
Robert, C. & Maillot, H. 1990. Paleoenvironments in the Weddell Sea area and Antarctic climates, as deduced from clay mineral associations and geochemical data, ODP Leg 113. In Proceedings of the Oceanic Drilling Programme, Scientific Results (eds Barker, P. F., Kennett, J. P., et al.), pp. 5170. Texas: Integrated Ocean Drilling Program, 113.Google Scholar
Rogenhagen, J., Jokat, W., Hinz, K. & Kristoffersen, Y. 2005. Improved seismic stratigraphy of the Mesozoic Weddell Sea. Marine Geophysical Researches 25, 265–82.Google Scholar
Shuster, D. L., Flowers, R. M. & Farley, K. A. 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters 249 (3–4), 148–61.Google Scholar
Skidmore, M. J. & Clarkson, P. D. 1972. Physiography and glacial geomorphology of the Shackleton Range. British Antarctic Survey Bulletin 30, 6980.Google Scholar
Spaeth, G., Hotten, R., Peters, M. & Techmer, K. S. 1995. Mafic dykes in the Shackleton Range, Antarctica. Polarforschung 63 (2/3), 101–21.Google Scholar
Spiegel, C., Kohn, B., Belton, D., Berner, Z. & Gleadow, A. 2009. Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: The effect of He implantation. Earth and Planetary Science Letters 285 (1–2), 105–14.Google Scholar
Stephenson, P. J. 1966. Geology,1. Theron Mountains, Shackleton Range and Whichaway Nunataks (with a section on paleomagmatism of the dolerite intrusions by D.J. Blundell). In: Trans-Antarctic Expedition 1955–1958. London: The Trans-Antarctic Expedition Committee, Scientific Reports no. 8, 79 pp.Google Scholar
Studinger, M. & Miller, H. 1999. Crustal structure of the Filchner-Ronne Shelf and Coats Land, Antarctica, from gravity and magnetic data: implications for the breakup of Gondwana. Journal of Geophysical Research 104 (B9), 379–94.Google Scholar
Sugden, D. E., Fogwill, C. J., Hein, A. S., Stuart, F. M., Kerr, A. R. & Kubik, P. W. 2014. Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion. Geomorphology 208, 190–9.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The continental crust: its composition and evolution. Geological Magazine 122 (6), 673–4.Google Scholar
Tessensohn, F., Kleinschmidt, G. & Buggisch, W. 1999 a. Permo-Carboniferous glacial beds in the Shackleton Range. Terra Antartica 6 (3), 337–44.Google Scholar
Tessensohn, F., Kleinschmidt, G., Talarico, F., Buggisch, W., Brommer, A., Henjes-Kunst, F., Kroner, U., Millar, I. L. & Zeh, A. 1999 b. Ross-Age amalgamation of East and West Gondwana: evidence from the Shackleton Range, Antarctica. Terra Antartica 6 (3), 317–25.Google Scholar
Thorn, V. C. & DeConto, R. 2006. Antarctic climate at the Eocene/Oligocene boundary - climate model sensitivity to high latitude vegetation type and comparisons with the palaeobotanical record. Palaeogeography, Palaeoclimatology, Palaeoecology 231 (1–2), 134–57.Google Scholar
Veevers, J. J. 1988. Gondwana facies started when Gondwanaland merged in Pangea. Geology 16 (8), 732–4.Google Scholar
Vermeesch, P. 2010. HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He data. Chemical Geology 271 (3–4), 108–11.Google Scholar
Wagner, G. A. 1972. The geological interpretation of fission track ages. Transactions of the American Nuclear Society 15, 117.Google Scholar
Will, T. M., Zeh, A., Gerdes, A., Frimmel, H. E., Millar, I. L. & Schmädicke, E. 2009. Palaeoproterozoic to Palaeozoic magmatic and metamorphic events in the Shackleton Range, East Antarctica: Constraints from zircon and monazite dating, and implications for the amalgamation of Gondwana. Precambrian Research 172 (1–2), 2545.Google Scholar
Wilson, D. S., Jamieson, S. S. R., Barrett, P. J., Leitchenkov, G., Gohl, K. & Larter, R. D. 2012. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 335–336, 2434.Google Scholar
Wolf, R. A., Farley, K. A. & Silver, L. T. 1996. Helium diffusion and low-temperature thermochronometry of apatite. Geochimica et Cosmochimica Acta 60 (21), 4231–40.Google Scholar
Yamada, R., Tagami, T., Nishimura, S. & Ito, H. 1995. Annealing kinetics of fission tracks in zircon: an experimental study. Chemical Geology (Isotope Geoscience Section) 122, 249–58.Google Scholar
Supplementary material: PDF

Krohne supplementary material

Krohne supplementary material 1

Download Krohne supplementary material(PDF)
PDF 2.4 MB