Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T13:09:14.418Z Has data issue: false hasContentIssue false

Sequence stratigraphy, chemostratigraphy and facies analysis of Cambrian Series 2 – Series 3 boundary strata in northwestern Scotland

Published online by Cambridge University Press:  04 November 2016

LUKE E. FAGGETTER*
Affiliation:
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
PAUL B. WIGNALL
Affiliation:
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
SARA B. PRUSS
Affiliation:
Smith College, Department of Geosciences, Northampton, Massachusetts 01063, USA
YADONG SUN
Affiliation:
GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany State Key Laboratory of Geobiology and Environmental Geology, China University of Geosciences, Wuhan, 430074, P.R. China
ROBERT J. RAINE
Affiliation:
Geological Survey of Northern Ireland, Dundonald House, Upper Newtownards Road, Ballymiscaw, Belfast, BT4 3SB, United Kingdom
ROBERT J. NEWTON
Affiliation:
School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, United Kingdom
MIKE WIDDOWSON
Affiliation:
Department of Geography, Earth and Environmental Sciences (GEES), University of Hull, Hull HU6 7RX, United Kingdom
MICHAEL M. JOACHIMSKI
Affiliation:
GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany
PAUL M. SMITH
Affiliation:
Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom
*
Author for correspondence: [email protected]

Abstract

Globally, the Series 2 – Series 3 boundary of the Cambrian System coincides with a major carbon isotope excursion, sea-level changes and trilobite extinctions. Here we examine the sedimentology, sequence stratigraphy and carbon isotope record of this interval in the Cambrian strata (Durness Group) of NW Scotland. Carbonate carbon isotope data from the lower part of the Durness Group (Ghrudaidh Formation) show that the shallow-marine, Laurentian margin carbonates record two linked sea-level and carbon isotopic events. Whilst the carbon isotope excursions are not as pronounced as those expressed elsewhere, correlation with global records (Sauk I – Sauk II boundary and Olenellus biostratigraphic constraint) identifies them as representing the local expression of the ROECE and DICE. The upper part of the ROECE is recorded in the basal Ghrudaidh Formation whilst the DICE is seen around 30m above the base of this unit. Both carbon isotope excursions co-occur with surfaces interpreted to record regressive–transgressive events that produced amalgamated sequence boundaries and ravinement/flooding surfaces overlain by conglomerates of reworked intraclasts. The ROECE has been linked with redlichiid and olenellid trilobite extinctions, but in NW Scotland, Olenellus is found after the negative peak of the carbon isotope excursion but before sequence boundary formation.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, P. E. R., Axheimer, N., Babcock, L. E., Eriksson, M. E., Schmitz, B. & Terfelt, F. 2009. Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia. Lethaia 42, 216.Google Scholar
Álvaro, J. J., Ahlberg, P., Babcock, L. E., Bordonaro, O. L., Choi, D. K., Cooper, R. A. & Jago, J. B. 2013. Global Cambrian trilobite palaeobiogeography assessed using parsimony analysis of endemicity. Geological Society of London, Memoirs 38, 273–96.Google Scholar
Álvaro, J. J., Bauluz, B., Subías, I., Pierre, C. & Vizcaïno, D. 2008. Carbon chemostratigraphy of the Cambrian–Ordovician transition in a midlatitude mixed platform, Montagne Noire, France. Geological Society of America Bulletin 120, 962–75.Google Scholar
Álvaro, J. J. & Debrenne, F. 2010. The Great Atlasian Reef complex: an early Cambrian subtropical fringing belt that bordered West Gondwana. Palaeogeography, Palaeoclimatology, Palaeoecology 294, 120–32.Google Scholar
Babcock, L. E., Rees, M. N., Robison, R. A., Langenburg, E. S. & Peng, S. 2004. Potential Global Standard Stratotype-section and Point (GSSP) for a Cambrian stage boundary defined by the first appearance of the trilobite Ptychagnostus atavus, Drum Mountains, Utah, USA. Geobios 37, 149–58.Google Scholar
Babcock, L. E., Robison, R. A., Rees, M. N., Peng, S. & Saltzman, M. R. 2007. The global boundary stratotype section and point (GSSP) of the Drumian Stage (Cambrian) in the Drum Mountains, Utah, USA. Episodes 30, 85.Google Scholar
Brasier, M. D., Corfield, R. M., Derry, L. A., Rozanov, A. Y. & Zhuravlev, A. Y. 1994. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22, 455–8.Google Scholar
Debrenne, F., Rozanov, A. Y. & Webers, G. F. 1984. Upper Cambrian Archaeocyatha from Antarctica. Geological Magazine 121, 291–9.Google Scholar
Fan, R., Deng, S. & Zhang, X. 2011. Significant carbon isotope excursions in the Cambrian and their implications for global correlations. Science China Earth Sciences 54, 1686–95.Google Scholar
Fritz, W. H. & Yochelson, E. L. 1988. The status of Salterella as a Lower Cambrian index fossil. Canadian Journal of Earth Sciences 25, 403–16.CrossRefGoogle Scholar
Guo, Q., Strauss, H., Liu, C., Zhao, Y., Yang, X., Peng, J. & Yang, H. 2010. A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 285, 143–51.Google Scholar
Howley, R. A. & Jiang, G. 2010. The Cambrian Drumian carbon isotope excursion (DICE) in the Great Basin, western United States. Palaeogeography, Palaeoclimatology, Palaeoecology 296, 138–50.Google Scholar
Huselbee, M. Y. & Thomas, A. T. 1998. Olenellus and conodonts from the Durness Group, NW Scotland, and the correlation of the Durness succession. Scottish Journal of Geology 34, 83–8.Google Scholar
Ishikawa, T., Ueno, Y., Shu, D., Li, Y., Han, J., Guo, J. & Komiya, T. 2014. The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China. Gondwana Research 25, 1045–56.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudás, F. Ö., Bowring, S. A., Higgins, J. A., Fike, D. A. & Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin 122, 1731–74.Google Scholar
McKie, T. 1989. Barrier island to tidal shelf transition in the early Cambrian Eriboll Sandstone. Scottish Journal of Geology 25, 273–93.Google Scholar
McKie, T. 1990. Tidal and storm influenced sedimentation from a Cambrian transgressive passive margin sequence. Journal of the Geological Society, London 147, 785–94.Google Scholar
McKie, T. 1993. Relative sea-level changes and the development of a Cambrian transgression. Geological Magazine 130, 245–56.Google Scholar
Montañez, I. P., Banner, J. L., Osleger, D. A., Borg, L. E. & Bosserman, P. J. 1996. Integrated Sr isotope variations and sea-level history of Middle to Upper Cambrian platform carbonates: implications for the evolution of Cambrian seawater 87Sr/86Sr. Geology 24, 917–20.Google Scholar
Montañez, I. P., Osleger, D. A., Banner, J. L., Mack, L. E. & Musgrove, M. 2000. Evolution of the Sr and C isotope composition of Cambrian oceans. GSA Today 10, 17.Google Scholar
Palmer, A. R. 1998. Terminal early Cambrian extinction of the Olenellina: documentation from the Pioche Formation, Nevada. Journal of Paleontology 72, 650–72.Google Scholar
Palmer, A. R. & James, N. P. 1980. The Hawke Bay event: a circum-Iapetus regression near the Lower–Middle Cambrian boundary. The Caledonides in the USA 2, 15–8.Google Scholar
Peng, S., Babcock, L. E. & Cooper, R. A. 2012. The Cambrian Period . In The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, G. & Schmitz, M.), pp. 437–88. Oxford: Elsevier.Google Scholar
Perejón, A., Moreno-Eiris, E., Bechstädt, T., Menéndez, S. & Rodríguez-Martínez, M. 2012. New Bilbilian (early Cambrian) archaeocyath-rich thrombolitic microbialite from the Láncara Formation (Cantabrian Mts., northern Spain). Journal of Iberian Geology 38, 313–30.Google Scholar
Pratt, B. R. & Bordonaro, O. L. 2014. Early middle Cambrian trilobites from La Laja Formation, Cerro El Molle, Precordillera of western Argentina. Journal of Paleontology 88, 906–24.Google Scholar
Raine, R. J. & Smith, M. P. 2012. Sequence stratigraphy of the Scottish Laurentian margin and recognition of the Sauk megasequence. In The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian–Ordovician Sauk Megasequence of Laurentia (eds Derby, J. R., Fritz, R. D., Longacre, S. A., Morgan, W. A. & Sternbach, C. A.), pp. 575–98. American Association of Petroleum Geologists Memoir 98.Google Scholar
Sloss, L. L. 1963. Sequences in the cratonic interior of North America. Geological Society of America Bulletin 74, 93114.Google Scholar
Smith, E. F., Macdonald, F. A., Petach, T. A., Bold, U. & Schrag, D. P. 2015. Integrated stratigraphic, geochemical, and paleontological late Ediacaran to early Cambrian records from southwestern Mongolia. Geological Society of America Bulletin 128, 442–68.Google Scholar
Wang, X., Hu, W., Yao, S., Chen, Q. & Xie, X. 2011. Carbon and strontium isotopes and global correlation of Cambrian Series 2–Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin, NW China. Marine and Petroleum Geology 28, 9921002.Google Scholar
Wright, D. T. & Knight, I. 1995. A revised chronostratigraphy for the lower Durness Group. Scottish Journal of Geology 31, 1122.Google Scholar
Zhang, W., Shi, X., Jiang, G., Tang, D. & Wang, X. 2013. Mass-occurrence of oncoids at the Cambrian Series 2–Series 3 transition: implications for microbial resurgence following an Early Cambrian extinction. Gondwana Research 28, 432–50.Google Scholar
Zhu, M. Y., Babcock, L. E. & Peng, S. C. 2006. Advances in Cambrian stratigraphy and paleontology: integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–22.Google Scholar
Zhu, M. Y., Zhang, J. M., Li, G. X. & Yang, A. H. 2004. Evolution of C isotopes in the Cambrian of China: implications for Cambrian subdivision and trilobite mass extinctions. Geobios 37, 287301.Google Scholar
Zhuravlev, A. Y. & Wood, R. A. 1996. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24, 311–4.Google Scholar