Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T07:41:01.676Z Has data issue: false hasContentIssue false

A search for shocked quartz grains and impact ejecta in early Silurian sediments on Gotland, Sweden

Published online by Cambridge University Press:  01 May 2009

Birger Schmitz
Affiliation:
Department of Marine Geology, Box 7064, University of Göteborg, S-402 32 Göteborg, Sweden
Lennart Jeppsson
Affiliation:
Department of Geology, Sölvegatan 13, University of Lund, S-223 62 Lund, Sweden
Johan Ekvall
Affiliation:
Department of Marine Geology, Box 7064, University of Göteborg, S-402 32 Göteborg, Sweden

Abstract

All bentonite and bentonite-resembling layers thicker than a few millimetres from a 120m-thick Early Silurian sequence on Gotland, Sweden, were searched for shocked quartz grains of comet or asteroid impact origin. Although more than 200000 quartz grains from 86 bentonite samples were studied, not one single grain with multiple planar shock features was found. The studied sequence represents sedimentation during a period of about 2 million years. Impact frequencies, estimated from the cratering record and astronomical observations, indicate that during a 2-myr- period on average 20 comet or asteroid bodies larger than 0.5 km in diameter strike the Earth. The number of smaller impacting bodies is many times higher. In the light of this high frequency of impacts, the absence of any shocked-quartz-bearing fallout layer in our sequence indicates that lateral spreading of such ejecta is relatively restricted during small- and medium-scale impact events.

The results also show that shocked quartz in general is absent or extremely rare in volcanic ash. This strengthens the case for an impact-related origin of shocked quartz grains in the Cretaceous–Tertiary boundary days.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexopoulos, J. S., Grieve, R. A. F. & Robertson, P. B. 1988. Microscopic lamellar deformation features in quartz: discriminative characteristics of shock-generated varieties. Geology 16, 796–9.2.3.CO;2>CrossRefGoogle Scholar
Alexopoulos, J. S., Grieve, R. A. F. & Robertson, P. B. 1989. Reply on comment on: ‘Microscopic lamellar deformation features in quartz: discriminative characteristics of shock-generated varieties’. Geology 17, 478–80.Google Scholar
Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. 1980. Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208, 10951108.CrossRefGoogle ScholarPubMed
Alvarez, W., Alvarez, L. W., Asaro, F. & Michel, H. V. 1984. The end of the Cretaceous: sharp boundary or gradual transition? Science 223, 1183–6.CrossRefGoogle ScholarPubMed
Alvarez, W., Smit, J., Lowrie, W., Asaro, F., Margolis, S. V., Claeys, P., Kastner, M. & Hildebrand, A. R. 1992. Proximal impact deposits at the Cretaceous–Tertiary boundary in the Gulf of Mexico: a restudy of DSDP Leg 77 Sites 536 and 540. Geology 20, 697700.2.3.CO;2>CrossRefGoogle ScholarPubMed
Bice, D. M., Newton, C. R., McCauley, S., Reiners, P. W. & McRoberts, C. A. 1992. Shocked quartz at the Triassic–Jurassic boundary in Italy. Science 255, 443–6.CrossRefGoogle ScholarPubMed
Bohor, B. F. 1990. Shocked quartz and more; impact signatures in Cretaceous/Tertiary boundary clays. Geological Society of America Special Paper 247, 335–42.CrossRefGoogle Scholar
Bohor, B. F., Foord, E. E., Modreski, P. J. & Triplehorn, D. M. 1984. Mineralogical evidence for an impact event at the Cretaceous–Tertiary boundary. Science 224, 867–9.CrossRefGoogle ScholarPubMed
Carter, N. L., Officer, C. B., Chesner, C. A. & Rose, W. I. 1986. Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous–Tertiary boundary phenomena. Geology 14, 380–3.2.0.CO;2>CrossRefGoogle Scholar
Claeys, P., Casier, J.-G. & Margolis, S. V. 1992. Micro-tektites and mass extinctions: evidence for a late Devonian asteroid impact. Science 257, 1102–4.CrossRefGoogle ScholarPubMed
Glass, B. P. 1982. Possible correlations between tektite events and climatic changes Geological Society of America Special Paper 190, 251–6.CrossRefGoogle Scholar
Glass, B. P. 1989. North American tektite debris and impact ejecta from DSDP Site 612. Meteoritics 24, 209–18.CrossRefGoogle Scholar
Glass, B. P. & Wu, J. 1993. Coesite and shocked quartz discovered in the Australasian and North American mikrotektite layers. Geology 21, 435–8.2.3.CO;2>CrossRefGoogle Scholar
Grieve, R. A. F. 1982. The record of impact on Earth: implications for a major Cretaceous/Tertiary impact event. Geological Society of America Special Paper 190, 2537.CrossRefGoogle Scholar
Grieve, R. A. F. 1987. Terrestrial impact structures. Annual Reviews of Earth and Planetary Sciences 15, 245–70.CrossRefGoogle Scholar
Grim, R. E. & Güven, N. 1978. Bentonites. Elsevier, 256 pp.Google Scholar
Hede, J. E. 1960. The Silurian of Gotland. In The Lower Palaeozoic of Scania. The Silurian of Gotland. Guide to Excursions (eds Regnell, G. and Hede, J. E.), pp. 4489. International Geological Congress XXI Session Norden 1960, A22/C17.Google Scholar
Henkel, H. & Pesonen, L. J. 1992. Impact craters and craterform structures in Fennoscandia. Tectonophysics 216, 3140.CrossRefGoogle Scholar
Housen, K. R., Schmidt, R. M. & Holsapple, K. A. 1983. Crater ejecta scaling laws: fundamental forms based on dimensional analysis. Journal of Geophysical Research 88, 2485–99.CrossRefGoogle Scholar
Izett, G. A. 1990. The Cretaceous/Tertiary boundary interval, Raton Basin, Colorado and New Mexico. Geological Society of America Special Paper 249, 1100.CrossRefGoogle Scholar
Izett, G. A., Maurrasse, F. J.-M. R., Lichte, F. E., Meeker, G. P. & Bates, R. 1990. Tektites in Cretaceous–Tertiary boundary rocks on Haiti. U.S. Geological Survey Open-File Report 90–635, 131.Google Scholar
Izett, G. A., Cobban, W. A., Obradovich, J. D. & Kunk, M.J. 1993. The Manson impact structure: 40Ar/39Ar age and its distal impact ejecta in the Pierre Shale in southeastern South Dakota. Science 262, 729–32.CrossRefGoogle ScholarPubMed
Jaeger, H. 1976. Das Silur und Unterdevon vom thüringischen Typ in Sardinien und seine regional geologische Bedeutung. Nova Acta Leopoldina, Neue Folge 45: 224, 263–99.Google Scholar
Jaeger, H. 1991. Neue Standard-Graptolithenfolge nach der ‘Grossen Krise’ an der Wenlock/Ludlow-Grenze (Silur). Neues Jahrbuch fü Geologie und Paläontologie, Abhandlungen 182, 303–54.CrossRefGoogle Scholar
Keller, G., D'Hondt, S. L., Orth, C. J., Gilmore, J. S., Oliver, P. Q., Shoemaker, E. M. & Molina, E. 1987. Late Eocene impact microspherules: stratigraphy, age, and geochemistry. Meteoritics 22, 2560.CrossRefGoogle Scholar
Koeberl, C. 1989. New estimates of area and mass for the North American tektite strewn field. Proceedings, 19th Lunar and Planetary Science Conference, 745–51.Google Scholar
Laufeld, S. 1974. Reference localities for paleontology and geology in the Silurian of Gotland. Sveriges Geologiska Undersökningar, Series C 705, 1172.Google Scholar
Laufeld, S. & Jeppsson, L. 1976. Silicification and bentonites in the Silurian of Gotland. Geologiska Föreningens i Stockholm Förhandlingar 98, 3144.CrossRefGoogle Scholar
Lindström, M. & Sturkell, E. F. F. 1992. Geology of the early Palaeozoic Lockne impact structure, central Sweden. Tectonophysics 216, 169–85.CrossRefGoogle Scholar
McGetchin, T. R., Settle, M. & Head, J. W. 1973. Radial thickness variation in impact crater ejecta: implications for lunar basin deposits. Earth and Planetary Science Letters 20, 226–36.CrossRefGoogle Scholar
Melosh, H. J. 1989. Impact Cratering–A Geologic Process. Oxford Monographs on Geology and Geophysics no. 11, 245 pp.Google Scholar
Nichols, D. J., Jarzen, D. M., Orth, C. J. & Oliver, P. Q. 1986. Palynological and iridium anomalies at Cretaceous–Tertiary boundary, south-central Saskatchewan. Science 231, 714–17.CrossRefGoogle ScholarPubMed
Odin, G. S., Hunziker, J. C, Jeppsson, L. & Spjeldnaes, N. 1986. Âges radiométriques K-Ar de biotites pyroclastiques sédimentées dans le Wenlock de Gotland (Suède). Chemical Geology (Isotope Geoscience Section) 59, 117–25.CrossRefGoogle Scholar
Poag, C. W., Powars, D. S., Poppe, L. J., Mixon, R. B., Edwards, L. E., Folger, D. W. & Bruce, S. 1992. Deep Sea Drilling Project Site 612 bolide event: new evidence of a late Eocene impact-wave deposit and a possible impact site, U.S. east coast. Geology 20, 771–4.2.3.CO;2>CrossRefGoogle Scholar
Schmitz, B. 1990. Reply on Comment on ‘Origin of microlayering in worldwide distributed Ir-rich marine Cretaceous/Tertiary boundary clays’. Geology 18, 8992.Google Scholar
Schmitz, B., Keller, G. & Stenvall, O. 1992. Stable isotope and foraminiferal changes across the Cretaceous–Tertiary boundary at Stevns Klint, Denmark: arguments for long-term oceanic instability before and after bolide-impact event. Palaeogeography, Palaeoclimatology, Palaeoecology 96, 233–60.CrossRefGoogle Scholar
Sharpton, V. L. & Grieve, R. A. F. 1990. Meteorite impact, cryptoexplosion, and shock metamorphism; a perspective on the evidence at the K/T boundary. Geological Society of America Special Paper 247, 301–18.CrossRefGoogle Scholar
Shoemaker, E. M., Wolfe, R. F. & Shoemaker, C. S. 1990. Asteroid and comet flux in the neighborhood of Earth. Geological Society of America Special Paper 247, 155–70.CrossRefGoogle Scholar
Smith, A. G., Hurley, A. M. & Briden, J. C. 1981. Phanerozoic Paleocontinental World Maps. Cambridge: Cambridge University Press, 102 pp.Google Scholar
Snäll, S. 1977. Silurian and Ordovician bentonites of Gotland: (Sweden). Stockholm Contributions in Geology 31:1, 180.Google Scholar
Stecher, O., Ngo, H. H., Papanastassiou, D. A. & Wasserburg, G. J. 1989. Nd and Sr isotopic evidence for the origin of tektite material from DSDP Site 612 off the New Jersey coast. Meteoritics 24, 8998.CrossRefGoogle Scholar
Stöffler, D., Gault, D. E., Wedekind, J. & Polkowski, G. 1975. Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta. Journal of Geophysical Research 80, 4062–77.CrossRefGoogle Scholar
Thein, J. 1987. A tektite layer in upper Eocene sediments of New Jersey continental slope (Site 612, Leg 95). Initial reports of the Deep Sea Drilling Project 95, 565–79.Google Scholar
Wang, K. 1992. Glassy microspherules (microtektites) from an Upper Devonian Limestone. Science 256, 1547–50.CrossRefGoogle ScholarPubMed
Wetherill, G. W. & Shoemaker, E. M. 1982. Collision of astronomically observable bodies with the Earth. Geological Society of America Special Paper 190, 113.CrossRefGoogle Scholar