Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T13:16:17.589Z Has data issue: false hasContentIssue false

Reassessing the age of Karpathos ophiolite (Dodecanese, Greece): consequences for Aegean correlations and Neotethys evolution

Published online by Cambridge University Press:  13 August 2019

Fabrice Cordey*
Affiliation:
Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Géologie de Lyon Terre Planètes Environnement LGLTPE, CNRS-UMR 5276, Bd du 11 Novembre 1918, 69622 Villeurbanne, France
Frédéric Quillévéré
Affiliation:
Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire de Géologie de Lyon Terre Planètes Environnement LGLTPE, CNRS-UMR 5276, Bd du 11 Novembre 1918, 69622 Villeurbanne, France
*
Author for correspondence: Fabrice Cordey, Email: [email protected]

Abstract

While the Neogene history of the Eastern Mediterranean region is now fairly well understood, our knowledge of older regional palaeogeographies is less accurate, especially the positions of blocks and nappes constituting the Aegean Islands prior to the Cenozoic. Our study focuses on the ophiolite exposed on the island of Karpathos (Dodecanese), which is located in the Aegean fore-arc at a pivotal position between the ‘western’ and ‘eastern’ ophiolites of the Mediterranean region and where conflicting Late Jurassic and Late Cretaceous ages have led to diverging tectonic and palaeogeographic interpretations. To test these ages, we targeted the radiolarian cherts that depositionally overlie the ophiolite and extracted diagnostic radiolarian assemblages of Aptian (∼125−113 Ma), early–middle Albian (∼113−105 Ma) and Turonian (∼93.9−89.8 Ma) ages. These results suggest that previous Late Cretaceous K–Ar isotopic ages (from 95.3 ± 4.2 Ma to 81.2 ± 1.6 Ma) may have been reset by Late Cretaceous metamorphism or affected by argon loss. Overall, the new Early Cretaceous ages show that the Karpathos ophiolite should not be correlated with the Pindos Nappes of Greece or the ophiolites of Cyprus or Syria but rather with the Lycian Nappes of Turkey and their root located in the Izmir–Ankara–Erzincan Suture Zone. Therefore, the Karpathos ophiolite represents a remnant of the Northern Neotethys, not the Pindos Ocean or the proto-Eastern Mediterranean Basin.

Type
Original Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubouin, J, Bonneau, M and Davidson, J (1976) Contribution à la géologie de l’arc égéen: l’île de Karpathos. Bulletin de la Société Géologique de France 7, 385401.CrossRefGoogle Scholar
Aubouin, J and Dercourt, J (1970) Sur la géologie de l’Egée: regard sur le Dodécanèse méridional (Kasos, Karpathos, Rhodes). Bulletin de la Société Géologique de France 7, 455–72.CrossRefGoogle Scholar
Barrier, E and Vrielynck, B (2008) Palaeotectonic Maps of the Middle East. Paris: Commission for the Geological Map of the World.Google Scholar
Barrier, E, Vrielynck, B, Brouillet, JF and Brunet, MF (2018) Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic Maps from Late Permian to Pliocene. Paris: Commission for the Geological Map of the World.Google Scholar
Bornovas, I and Rontogianni-Tsiabaou, T (1983) Geological Map of Greece, scale 1:500,000. Athens: Institute of Geology and Mineral Exploration.Google Scholar
Bragin, NY and Tekin, UK (1996) Age of radiolarian-chert blocks from the Senonian Ophiolitic Mélange (Ankara, Turkey). Island Arc 5, 114–22.CrossRefGoogle Scholar
Christodoulou, G (1960) Geologische und mikropalaäontologische Untersuchungen auf der insel Karpathos (Dodekanes). Palaeontographica, Abteilung A 115, 1143.Google Scholar
Christodoulou, G (1968) Karpathos Map Sheet. Geological Map of Greece. Athens: Institute for Geology and Subsurface Research.Google Scholar
Cohen, KM, Finney, SC, Gibbard, PL and Fan, J-X (2013) (updated 2018). The ICS International Chronostratigraphic Chart. Episodes 36, 199–204.CrossRefGoogle Scholar
Coleman, RG (1977) Ophiolites – Ancient Oceanic Lithosphere? Berlin: Springer, 229 pp.CrossRefGoogle Scholar
Collins, AS and Robertson, AHF (1997) Lycian melange, southwestern Turkey: an emplaced Late Cretaceous accretionary complex. Geology 25, 255–8.2.3.CO;2>CrossRefGoogle Scholar
Collins, AS and Robertson, AHF (2003) Kinematic evidence for Late Mesozoic-Miocene emplacement of the Lycian Allochthon over the Western Anatolide Belt. Geological Journal 38, 295310.CrossRefGoogle Scholar
Cordey, F (1998) Radiolaires des complexes d’accrétion cordillérains. Geological Survey of Canada Bulletin 509, 1–209.Google Scholar
Cordey, F and Cornée, J-J (2009) New radiolarian assemblages from La Désirade Island basement complex (Guadeloupe, Lesser Antilles Arc) and Caribbean tectonic implications. Bulletin de la Société Géologique de France 180, 399409.CrossRefGoogle Scholar
Cordey, F and Krauss, P (1990) A field technique for identifying and dating radiolaria applied to British Columbia and Yukon. Geological Survey of Canada Paper 90-1E, 127–9.CrossRefGoogle Scholar
Danelian, T, Bonneau, M, Cadet, J-P, Poisson, A and Vrielynck, B (2001) Palaeoceanographic implications of new and revised bio-chronostratigraphic constraints from the Profitis Ilias Unit (Rhodes, Greece). Bulletin of the Geological Society of Greece 34, 619–25.Google Scholar
Danelian, T, Robertson, AHF, Collins, AS and Poisson, A (2006) Biochronology of Jurassic and Early Cretaceous radiolarites from the Lycian Mélange (SW Turkey) and implications for the evolution of the Northern Neotethyan ocean. In Tectonic Development of the Eastern Mediterranean Region (ed. AHF Robertson), pp. 229–36. Geological Society of London, Special Publication no. 260.CrossRefGoogle Scholar
Davidson-Monett, J (1974) Contribution à l’étude géologique de l’arc égéen: l’île de Karpathos (Dodécanèse Méridional, Grèce). PhD thesis, University of Paris VI, Paris, France. Published thesis.Google Scholar
de Graciansky, PC (1967) Existence d’une nappe ophiolitique à l’extrémité occidentale de la chaîne sud-anatolienne: relations avec les autres unités charriées et avec les terrains autochtones (Province de Muğla, Turquie). Comptes Rendus de l’Académie des Sciences Paris 264, 2876–9.Google Scholar
de Stefani, C, Forsyth Major, CJ and Barbey, W (1895) Aperçu géologique et paléontologique de l’Ile de Karpathos. In Karpathos, étude géologique, paléontologique et botanique (eds de Stefani, C, Forsyth Major, CJ and Barbey, W), pp. 153–64. Lausanne: G Bridel et cie.Google Scholar
De Wever, P and Cordey, F (1986) Datation par les radiolaires de la formation des radiolarites s.s. de la série du Pinde-Olonos (Grèce): Bajocian(?) - Tithonique. Marine Micropaleontology 11, 113–27.CrossRefGoogle Scholar
Dilek, Y and Furnes, H (2014) Ophiolites and their origins. Elements 10, 93100.CrossRefGoogle Scholar
Dilek, Y, Thy, P, Hacker, B and Grundvig, S (1999) Structure and petrology of Tauride ophiolites and mafic dyke intrusions (Turkey): implications for the Neotethyan ocean. Geological Society of America Bulletin 111, 1192–1216.2.3.CO;2>CrossRefGoogle Scholar
Ersoy, EY, Cemen, I, Helvaci, C and Billor, Z (2014) Tectono-stratigraphy of the Neogene basins in Western Turkey: implications for tectonic evolution of the Aegean Extended Region. Tectonophysics 635, 33–58.CrossRefGoogle Scholar
Garfunkel, Z (2004) Origin of the Eastern Mediterranean basin: a reevaluation. Tectonophysics 391, 1134.CrossRefGoogle Scholar
Göncüoğlu, MC, Turhan, N, Sentürk, K, Özcan, A, Uysal, S and Yaliniz, MK (2000) A geotraverse across northwestern Turkey: tectonic units of the Central Sakarya region and their tectonic evolution. In Tectonics and Magmatism in Turkey and the Surrounding Area (eds Bozkurt, E, Winchester, JA and Piper, JDA), pp. 139–61. Geological Society of London, Special Publication no. 173.Google Scholar
Göncüoğlu, MC, Yaliniz, MK, Tekin, UK and Turhan, N (2001) Petrology of Late Berriasian-Late Hauterivian and Cenomanian oceanic basalts within the Central Sakarya ophiolitic complex, NW Turkey: constraints for the evolution of the Izmir-Ankara oceanic branch of Neotethys. Fourth International Turkish Geology Symposium (ITGS IV), Cfikfirova University Adana (Turkey), 93.Google Scholar
Goričan, S (1994) Jurassic and Cretaceous radiolarian biostratigraphy and sedimentary evolution of the Budva Zone (Dinarides, Montenegro). Mémoires de Géologie Lausanne 18, 11–76.Google Scholar
Güngör, T, Akal, C, Özer, S, Hasözbek, A, Sarı, B and Mertz-Kraus, R (2018) Kinematics and U-Pb zircon ages of the sole metamorphics of the Marmaris Ophiolite, Lycian Nappes, Southwest Turkey. International Geology Review, published online 23 July 2018. doi: 10.1080/00206814.2018.1498029.CrossRefGoogle Scholar
Gürer, D, Plunder, A, Kirst, F, Corfu, F, Schmid, SM and van Hinsbergen, DJJ (2018) A long-lived Late Cretaceous–Early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey. Earth and Planetary Science Letters 481, 111–24.CrossRefGoogle Scholar
Hatzipanagiotou, K (1987) Mikrofazies und fauna von karbonatgesteinen der ophiolithischen Melange der südägäischen Inselbrücke. Newsletters on Stratigraphy 18, 41–50.Google Scholar
Hatzipanagiotou, K (1988) Einbindung der obersten Einheit von Rhodos und Karpathos (Griechenland) in der alpinischen Ophiolith-Gürtel. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 176, 395442.Google Scholar
Hatzipanagiotou, K (1991) K-Ar dating of ophiolites from the Rhodes and Karpathos islands, Dodekanese, Greece. Geologica Balcanica 21, 6976.Google Scholar
Jolivet, L, Faccenna, C, Huet, B, Labrousse, L, Le Pourhiet, L, Lacombe, O, Lecomte, E, Burov, E, Denèle, Y, Brun, J-P, Philippon, M, Paul, A, Salaün, G, Karabulut, H, Piromallo, C, Monié, P, Gueydan, F, Okay, A, Oberhänsli, R, Pourteau, A, Augier, R, Gadenne, L and Driussi, O (2013) Aegean tectonics: strain localization, slab tearing and trench retreat. Tectonophysics 597–598, 133.CrossRefGoogle Scholar
Jolivet, L, Rimmelé, G, Oberhänsli, R, Goffé, B and Candan, O (2004) Correlation of synorogenic tectonic and metamorphic events in the Cyclades, the Lycian Nappes and the Menderes massif, geodynamic implications. Bulletin de la Société Géologique de France 175, 217–38.CrossRefGoogle Scholar
Koepke, J, Kreuzer, H and Seidel, E (1985) Ophiolites in the Southern Aegean arc (Crete, Karpathos, Rhodes) - linking the ophiolite belts of the Hellenides and the Taurides. Ofioliti 10, 343–54.Google Scholar
Koepke, J, Seidel, E and Kreuzer, H (2002) Ophiolites on the Southern Aegean islands Crete, Karpathos and Rhodes: composition, geochronology and position within the ophiolite belts of the Eastern Mediterranean. Lithos 65, 183–203.CrossRefGoogle Scholar
Liati, A, Gebauer, D and Fanning, CM (2004) The age of ophiolitic rocks of the Hellenides (Vourinos, Pindos, Crete): first U-Pb ion micropobe (SHRIMP) zircon ages. Chemical Geology 207, 171–88.CrossRefGoogle Scholar
McDougall, I and Harrison, TM (1999) Geochronology and Thermochronology by the 40Ar/39Ar Method. New York: Oxford University Press, 269 pp.Google Scholar
Maffione, M and van Hinsbergen, DJJ (2018) Reconstructing plate boundaries in the Jurassic Neo-Tethys from the East and West Vardar Ophiolites (Greece and Serbia). Tectonics 37, 858–87.CrossRefGoogle Scholar
Martelli, A (1916) Appunti geologici sull’Isola di Scarpanto. Bollettino della Società Geologica Italiana 35, 215–34.Google Scholar
Menant, A, Jolivet, L and Vrielynck, B (2016) Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous. Tectonophysics 675, 103–40.CrossRefGoogle Scholar
O’Dogherty, L (1994) Biochronology and paleontology of mid-Cretaceous radiolarians from Northern Apennines (Italy) and Betic Cordillera (Spain). Mémoires de Géologie Lausanne 21, 1413.Google Scholar
O’Dogherty, L, Carter, ES, Dumitrica, P, Goričan, S, De Wever, P, Bandini, N, Baumgartner, PO and Matsuoka, A (2009) Catalogue of Mesozoic radiolarian genera: Part 2. Jurassic–Cretaceous. Geodiversitas 31, 271356.CrossRefGoogle Scholar
Okay, AI, Tansel, I and Tüysüz, O (2001) Obduction, subduction and collision as reflected in the Upper Cretaceous-Lower Eocene sedimentary record of western Turkey. Geological Magazine 138, 117–42.CrossRefGoogle Scholar
Pantopoulos, G and Zelilidis, A (2014) Eocene to early oligocene turbidite sedimentation in the SE Aegean (Karpathos Island, SE Greece): stratigraphy, facies analysis, nannofossil study, and possible hydrocarbon potential. Turkish Journal of Earth Sciences 23, 31–52.CrossRefGoogle Scholar
Papanikolaou, D (2013) Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides. Tectonophysics 595–596, 124.CrossRefGoogle Scholar
Parlak, O, Karaoglan, F, Rizaoglu, T, Klötzli, U, Koller, F and Billor, Z (2013) U-Pb and 40Ar/39Ar geochronology of the ophiolites and granitoids from the Tauride Belt: implications for the evolution of the Inner Tauride Suture. Journal of Geodynamics 65, 2237.CrossRefGoogle Scholar
Pessagno, EA Jr (1976) Radiolarian zonation and stratigraphy of the Upper Cretaceous portion of the Great Valley Sequence, California Coast Ranges. Micropaleontology, Special Publication no. 2, 195.Google Scholar
Pessagno, EA Jr (1977) Lower Cretaceous radiolarian biostratigraphy of the Great Valley sequence and Franciscan Complex, California Coast Ranges. Cushman Foundation Foraminiferal Research Special Publication 15, 187.Google Scholar
Psimenos, S, Reppas, F, Mouzaki, A, Tassoula, N and Kodoni, O (2017) Karpathos/Kasos Map Sheet 1:30 000. Athens: Terrain Editions.Google Scholar
Robertson, AHF (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 65, 167.CrossRefGoogle Scholar
Robertson, AHF, Parlak, O, Ustaömer, T (2012) Overview of the Palaeozoic–Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria). Petroleum Geoscience 18, 381404.CrossRefGoogle Scholar
Robertson, AHF and Pickett, EA (2000) Palaeozoic-Early Tertiary Tethyan evolution of mélanges, rift and passive margin units in the Karaburun Peninsula (western Turkey) and Chios Island (Greece). In Tectonics and Magmatism in Turkey and the Surrounding Area (eds Bozkurt, E, Winchester, JA and Piper, JDA), pp. 2542. Geological Society of London, Special Publication no. 173.Google Scholar
Robertson, AHF, Ustaömer, T, Pickett, EA, Collins, AS, Andrew, T and Dixon, JE (2004) Testing models of Late Palaeozoic-Early Mesozoic orogeny in Western Turkey: support for an open-Tethys model. Journal of the Geological Society 161, 201511.CrossRefGoogle Scholar
Robertson, AHF and Woodcock, NH (1982) Sedimentary history of the south-western segment of the Mesozoic–Tertiary Antalya continental margin, south-western Turkey. Eclogae Geologicae Helveticae 75, 517–62.Google Scholar
Roche, V, Conand, C, Jolivet, L and Augier, R (2018). Tectonic evolution of Leros Island (Dodecanese, Greece) and correlations between the Aegean Domain and the Menderes Massif. Journal of the Geological Society 175, 836–49.CrossRefGoogle Scholar
Royden, L and Faccenna, L (2018) Subduction orogeny and the Late Cenozoic evolution of the Mediterranean Arcs. Annual Review of Earth and Planetary Sciences 46, 261–89.CrossRefGoogle Scholar
Schettino, A and Turco, E (2011) Tectonic history of the western Tethys since the Late Triassic. Geological Society of America Bulletin 123, 89105.CrossRefGoogle Scholar
Smith, AG (2006) Tethyan ophiolite emplacement, Africa to Europe motions, and Atlantic spreading. In Tectonic Development of the Eastern Mediterranean Region (ed. AHF Robertson), pp. 1134. Geological Society of London, Special Publication no. 260.CrossRefGoogle Scholar
Van Hinsbergen, DJJ, Kaymakçi, N, Spakman, W and Torsvik, TH (2010) Reconciling the geological history of western Turkey with plate circuits and mantle tomography. Earth and Planetary Science Letters 297, 674–86.CrossRefGoogle Scholar
Van Hinsbergen, DJJ, Zachariasse, WJ, Wortel, MJR and Meulenkamp, JE (2005) Nappe stacking resulting from subduction of oceanic and continental lithosphere below Greece. Geology 33, 325–8.CrossRefGoogle Scholar
Vinassa de Regny, P (1901) Radiolari Cretacei dell’lsola di Karpathos. Memoria Accademia Scienze Bologna, serie 5, 9, 497–512.Google Scholar
Yılmaz, PO (1984) Fossil and K–Ar data for the age of the Antalya Complex, S.W. Turkey. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, JE & Robertson, AHF), pp. 335–48. Geological Society of London, Special Publication no. 17.Google Scholar
Zachariasse, WJ, Van Hinsbergen, DJJ and Fortuin, AR (2008) Mass wasting and uplift on Crete and Karpathos (Greece) during the early Pliocene related to beginning of south Aegean left-lateral, strike slip tectonics. Geological Society of America Bulletin 120, 976–93.CrossRefGoogle Scholar
Supplementary material: File

Cordey and Quillévéré supplementary material

Cordey and Quillévéré supplementary material 1

Download Cordey and Quillévéré supplementary material(File)
File 23.5 KB