Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T23:37:11.913Z Has data issue: false hasContentIssue false

Rare metals on shatter cone surfaces from the Steinheim Basin (SW Germany) – remnants of the impacting body?

Published online by Cambridge University Press:  13 February 2017

E. BUCHNER*
Affiliation:
HNU – Neu-Ulm University, Wileystraße 1, D-89231 Neu-Ulm, Germany Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstraße 18, D-70174 Stuttgart, Germany
M. SCHMIEDER
Affiliation:
USRA – Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston TX 77058, USA NASA–SSERVI
*
Author for correspondence: [email protected]

Abstract

The ~3.8 km Steinheim Basin in SW Germany is a well-preserved complex impact structure characterized by a prominent central uplift and well-developed shatter cones that occur in different shocked target lithologies. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy and electron probe microanalysis have revealed, for the first time, the occurrence of rare metals on the Steinheim shatter cone surfaces. Shatter cones produced from the Middle Jurassic (Aalenian) Opalinus Claystone (‘Opalinuston’), temporarily exposed in the central uplift in spring 2010, and shatter cones in Upper Jurassic (Oxfordian) limestones from the southeastern crater rim domain are commonly covered by faint coatings. The Opalinus Claystone shatter cone surfaces carry coatings dominated by Fe, Ca, P, S and Al, and are covered by abundant small, finely dispersed microparticles and aggregates of native gold, as well as locally elevated concentrations of Pt. On several surfaces of the claystone shatter cones, additional Fe, Ni and Co was detected. The Ca–Mn-rich coatings on the limestone shatter cone surfaces locally include patches of Fe, Ni, Co, Cu and Au in variable amounts and proportions. The intriguing coatings on the Steinheim shatter cones could either stem from the impacted Lower Jurassic to Palaeogene sedimentary target rocks; from the crystalline-metamorphic Variscan crater basement; or, alternatively, these coatings might represent altered meteoritic matter from the Steinheim impactor, possibly an iron meteorite, which may have been remobilized during post-impact hydrothermal activity. We here discuss the most plausible source for the rare metals found adherent to the shatter cone surfaces.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alwmark, C. & Schmitz, B. 2007. Extraterrestrial chromite in the resurge deposits of the early Late Ordovician Lockne crater, central Sweden. Earth and Planetary Science Letters 253, 291–3.Google Scholar
Andalib, F. 1970. Mineralogisch-geochemische Untersuchungen der aragonitischen Fossilien aus dem Dogger alpha (Opalinuston) in Württemberg. Arbeiten aus dem Geologisch-Paläontologischen Institut der Universität Stuttgart (TH), Neue Folge 62, 66 pp. (in German).Google Scholar
Anders, E. 1988. Circumstellar material in meteorites: noble gases, carbon and nitrogen. In Meteorites and the Early Solar System (eds Kerridge, J. F. & Matthews, M. S.), pp. 927–55. Tucson: University of Arizona Press.Google Scholar
Anders, D., Buchner, E., Schmieder, M. & Kegler, P. 2013. Varietäten von Schmelzelithologien in den Impaktiten des Steinheimer Beckens (SW-Deutschland). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geology) 164, 491501 (in German).Google Scholar
Baratoux, D. & Melosh, H. J. 2003. The formation of shatter cones by shock wave interference during impacting. Earth and Planetary Science Letters 216, 4354.Google Scholar
Baratoux, D. & Reimold, W. U. 2016. The current state of knowledge about shatter cones: introduction to the special issue. Meteoritics & Planetary Science 51, 1389–34.Google Scholar
Bauer, R. & Schaudy, R. 1970. Activation analytical determination of elements in meteorites, 3. Determination of manganese, sodium, gallium, germanium, copper and gold in 21 iron meteorites and 2 mesosiderites. Chemical Geology 6, 119–31.Google Scholar
Blau, P. J., Axon, H. J. & Goldstein, J. I. 1973. Investigation of the Canyon Diablo metallic spheroids and their relationship to the breakup of the Canyon Diablo meteorite. Journal of Geophysical Research 78, 363–74.Google Scholar
Borger, H. & Widdowson, M. 2001. Indian laterites, and lateritious residues of southern Germany: a petrographic, mineralogical, and geochemical comparison. Zeitschrift für Geomorphologie, Neue Folge 45, 177200.Google Scholar
Branco, W. & Fraas, E. 1905. Das kryptovulcanische Becken von Steinheim. Abhandlungen der königlich preussischen Akademie der Wissenschaften zu Berlin. Physikalisch Abhandlungen 1, 164 (in German).Google Scholar
Brodbeck, M. 1995. Geologie und Hydrogeologie des Blattes 7127 Westhausen (Ostalbkreis). Erläuterungen zur Geologischen Karte 1:25 000. Ph.D. thesis, Institut für Geologie und Paläontologie der Universität Stuttgart, Stuttgart, Germany, 308 pp. (in German). Published thesis.Google Scholar
Brumsack, H.-J. 1991. Inorganic geochemistry of the German ‘Posidonia Shale’: palaeoenvironmental consequences. In Modern and Ancient Continental Shelf Anoxia (eds Tyson, R. V. & Pearson, T. H.), pp. 353–62. Geological Society of London, Special Publication no. 58.Google Scholar
Buchner, E. & Schmieder, M. 2009. Steinheim Basin impact spherules (abstract #5075). Meteoritics and Planetary Science 44, A44.Google Scholar
Buchner, E. & Schmieder, M. 2010. Steinheim suevite – a first report of melt-bearing impactites from the Steinheim Basin (SW Germany). Meteoritics and Planetary Science 45, 1093–107.Google Scholar
Buchner, E. & Schmieder, M. 2013a. Das Ries-Steinheim-Ereignis – impakt in eine miozäne Seen- und Sumpflandschaft. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geology) 164, 459–70.Google Scholar
Buchner, E. & Schmieder, M. 2013b. Der Steinheimer Suevit – schmelzeführende Impaktite aus dem Steinheimer Becken, Südwestdeutschland. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geology) 164, 471–90.Google Scholar
Buchner, E. & Schmieder, M. 2015. The Steinheim Basin impact crater (SW-Germany) – where are the ejecta? Icarus 250, 529–43.Google Scholar
Buchner, E. & Schmieder, M. 2016a. Discovery of possible meteoritic matter on shatter cones and slickensides – 1. Ries crater, Southern Germany. 79th Annual Meeting of the Meteoritical Society (7–12 August 2016), Berlin, Germany, abstract no. 6027.Google Scholar
Buchner, E. & Schmieder, M. 2016b. Discovery of possible meteoritic matter on shatter cones – 2. Clearwater East impact structure, Québec, Canada. 79th Annual Meeting of the Meteoritical Society (7–12 August 7–12 2016), Berlin, Germany, abstract no. 6028.Google Scholar
Buchner, E., Schwarz, W. H., Schmieder, M. & Trieloff, M. 2010. Establishing a 14.6 ± 0.2 Ma age for the Nördlinger Ries impact (Germany) – a prime example for concordant isotopic ages from various dating materials. Meteoritics and Planetary Science 45, 662–74.Google Scholar
Buchner, E., Schwarz, W. H., Schmieder, M. & Trieloff, M. 2013. Das Alter des Meteoritenkraters Nördlinger Ries – eine Übersicht und kurze Diskussion der neueren Datierungen des Riesimpakts. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geology) 164, 433–45.Google Scholar
Chen, Y., Wang, D. & Pernicka, E. 1992. The compositions of six Chinese ordinary chondrites and element distributions in their different phases. Chinese Journal of Chemistry 11, 214–23.Google Scholar
Danielson, L. R., Righter, K. & Humayun, M. 2009. Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites. Meteoritics and Planetary Science 44, 1019–32.Google Scholar
Dietz, R. S. 1959. Shatter cones in cryptoexplosion structures (meteorite impact?). The Journal of Geology 67, 496505.Google Scholar
Dietz, R. S. 1960. Meteorite impact suggested by shatter cones in rock. Science 131, 1781–84.Google Scholar
Dietz, R. S. & Butler, L. W. 1964. Shatter-cone orientations at Sudbury, Canada. Nature 4, 204–5.Google Scholar
Di Vincenzo, G. & Skála, R. 2009. 40Ar–39Ar laser dating of tektites from the Cheb Basin (Czech Republic): evidence for coevality with moldavites and influence of the dating standard on the age of the Ries impact. Geochimica et Cosmochimica Acta 73, 493513.Google Scholar
Engelhardt, W. von, Bertsch, W., Stöffler, D., Groschopf, P. & Reiff, W. 1967. Anzeichen für den meteoritischen Ursprung des Beckens von Steinheim. Die Naturwissenschaften 54, 198–99 (in German).Google Scholar
Etzold, A. 1994. Geologische Karte von Baden-Württemberg 1:25000, 7126 Aalen, Erläuterungen. Stuttgart: Landesvermessungsamt Baden-Württemberg, 248 pp. (in German).Google Scholar
Evans, N. J., Gregoire, D. C. & Goodfellow, W. D. 1993. Use of platinum-group elements for impactor identification: terrestrial impact craters and Cretaceous–Tertiary boundary. Geochimica et Cosmochimica Acta 57, 3737–48.Google Scholar
French, B. M. 1998. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. LPI Contribution no. 954. Houston, Texas: Lunar and Planetary Institute, 120 pp.Google Scholar
French, B. M. & Koeberl, C. 2010. The convincing identification of terrestrial meteorite impact structures: what works, what doesn't, and why. Earth-Science Reviews 98, 123–70.Google Scholar
French, B. M. & Short, N. M. 1968. Shock Metamorphism of Natural Materials. Baltimore, Maryland, USA: Mono Book, 644 p.Google Scholar
Fröhlich, D. R., Amayri, S., Drebert, J., Grolimund, D., Huth, J., Kaplan, U., Krause, J. & Reich, T. 2012. Speciation of Np(V) uptake by Opalinus Clay using synchrotron microbeam techniques. Analytical and Bioanalytical Chemistry 404, 2151–62.Google Scholar
Fröhlich, D. R., Amayri, S., Drebert, J. & Reich, T. 2011. Sorption of neptunium(V) on Opalinus Clay under aerobic/anaerobic conditions. Radiochimica Acta 99, 71–7.Google Scholar
Gay, N. C. 1976. Spherules on shatter cone surfaces from the Vredefort Structure, South Africa. Science 194, 724–25.Google Scholar
Gay, N. C., Comins, N. R. & Simpson, C. 1978. The composition of spherules and other features on shatter cone surfaces from the Vredefort structure, South Africa. Earth and Planetary Science Letters 41, 372–80.Google Scholar
Geyer, O. F. 1957. Über das Bohnerz in Württemberg. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geology) 109, 22–7.Google Scholar
Geyer, O. F. & Gwinner, M. P. 1991. Geologie von Baden-Württemberg. Stuttgart: Schweizerbart-Verlag, 482 pp (in German).Google Scholar
Gibson, H. M. & Spray, J. G. 1998. Shock-induced melting and vaporization of shatter cone surfaces: evidence from the Sudbury impact structure. Meteoritics and Planetary Science 33, 329–36.Google Scholar
Goderis, S., Paquay, F. & Claeys, Ph. 2012. Projectile identification in terrestrial impact structures and ejecta material. In Impact Cratering: Processes and Products (eds Osinski, G. R. & Pierazzo, E.), pp. 223–39. Chichester/Hoboken: Wiley-Blackwell.Google Scholar
Grieve, R. A. F., Palme, H. & Plant, A. G. 1980. Siderophile-rich particles in the melt rocks at the E. Clearwater impact structure, Quebec: their characteristics and relationship to the impacting body. Contributions to Mineralogy and Petrology 75, 187–98.Google Scholar
Groschopf, P. & Reiff, W. 1966. Ergebnisse neuerer Untersuchungen im Steinheimer Becken (Württemberg). Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 121, 155–68 (in German).Google Scholar
Groschopf, P. & Reiff, W. 1969. Das Steinheimer Becken. Ein Vergleich mit dem Ries. Geologica Bavarica 61, 400–12 (in German).Google Scholar
Hagerty, J. J. & Newsom, H. E. 2003. Hydrothermal alteration at the Lonar Lake impact structure, India: implications for impact cratering on Mars. Meteoritics and Planetary Science 38, 365–81.Google Scholar
Hecht, F. & Fenninger, H. 1963. Determination of trace elements in meteorites. Progress in Oceanography 3, 145–8.Google Scholar
Heitzmann, P. & Bossart, P. 2001. Das Mont-Terri-Projekt. Untersuchungen über den Opalinuston im internationalen Felslabor. Bulletin für angewandte Geologie 6, 183–97 (in German).Google Scholar
Heizmann, E. P. J. & Reiff, W. 2002. Der Steinheimer Meteorkrater. Munich: Pfeil-Verlag, 160 pp. (in German).Google Scholar
Hsu, W., Huss, G. R. & Wasserburg, G. J. 2000. Ion probe measurements of Os, Ir, Pt, and Au in individual phases of iron meteorites. Geochimica et Cosmochimica Acta 64, 1133–47Google Scholar
Hüttner, R. & Schmidt-Kaler, H. 1999. Meteoritenkrater Nördlinger Ries. Munich: Pfeil-Verlag, 144 pp. (in German).Google Scholar
Ivanov, B. A. & Stöffler, D. 2005. The Steinheim impact crater, Germany: modeling of a complex crater with central uplift. 36th Lunar and Planetary Science Conference, Houston, Texas, USA, 14–18 March 2005, abstract no. 1443.Google Scholar
Jõeleht, A., Kirsimäe, K., Plado, J., Versh, E. & Ivanov, B. A. 2005. Cooling of the Kärdla impact crater: II. impact and geothermal modeling. Meteoritics and Planetary Science 40, 2133.Google Scholar
Jones, R. S. 1968. Gold in meteorites and in the Earth's crust. Geological Survey Circular no. 603, 4 pp. US Geological Survey.Google Scholar
Kobler, H.-U. 1972. Geochemische, sedimentologische und ökologische Untersuchungen im Braunen Jura alpha (Opalinuston) der Schwäbischen Alb. Arbeiten aus dem Geologisch-Paläontologischen Institut der Universität Stuttgart (TH), Neue Folge 66, 134 pp. (in German).Google Scholar
Koeberl, C. 1998. Identification of meteoritic components in impactites. In Meteorites: Flux with Time and Impact Effects (eds Grady, M. M, Hutchison, R., McGall, G. H. & Rothery, D. A.), pp. 133–53. Geological Society of London, Special Publication no. 140.Google Scholar
Koeberl, C. 2014. Chapter 2.5 – The geochemistry and cosmochemistry of impacts. In Treatise on Geochemistry, Vol. 2, 2nd ed. (eds Holland, H. D. & Turekian, K. K.), pp. 73118. Amsterdam, New York: Elsevier.Google Scholar
Korotchantseva, E. V., Ivanova, M. A., Lorenz, C. A., Buikin, A. I., Trieloff, M., Nazarov, M. A., Promprated, P. A. & Taylor, L. A. 2003. Major and trace element chemistry and Ar–Ar age of the NWA 011 achondrite. 34th Lunar and Planetary Science Conference, Houston, Texas, USA, 17–21 March 2003, abstract no. 1575.Google Scholar
Kracher, A., Willis, J. & Wasson, J. T. 1980. Chemical classification of iron meteorites-IX. A new group (IIF), revision of IAB and IIICD, and data on 57 additional irons. Geochimica et Cosmochimica Acta 44, 773–87.Google Scholar
Kring, D. A. 2007. Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater). LPI Contribution no. 1355. Houston, Texas: Lunar and Planetary Institute, 150 pp.Google Scholar
Krot, A. N., Meibom, A., Weisberg, M. K. & Keil, K. 1999. The CR chondrite clan: implications for early solar system processes. Meteoritics and Planetary Science 37, 1451–90.Google Scholar
Langenhorst, F. 2002. Shock metamorphism of some minerals: basic introduction and microstructural observations. Bulletin of the Czech Geological Survey 77, 265–82.Google Scholar
Linhardt, E. & Zarbok, P. 2005. Geochemischer Atlas natürlicher Haupt-, Neben- und Spurenelemente der Gesteine Bayerns. Bayerisches Landesamt für Umwelt, Fachbericht 24, 188 pp. (in German).Google Scholar
Lorenz, C. A., Ivanova, M. A., Artemieva, N. A., Sadilenko, D. A., Chennaoui Aoudjehane, H., Roschina, I. A., Korochantsev, A. V. & Humayun, M. 2014. Formation of a small impact structure discovered within the Agoudal meteorite strewn field, Morocco. Meteoritics and Planetary Science 50, 112–34.Google Scholar
Maier, W. D., Andreoli, M. A. G., McDonald, I., Higgins, M. D., Boyce, A. J., Shukolyukov, A., Lugmair, G. W., Ashwal, L. D., Gräser, P., Ripley, E. M. & Hart, R. J. 2006. Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441, 203–6.Google Scholar
Mattmüller, C. R. 1994. Ries und Steinheimer Becken. Geologischer Führer und Einführung in die Meteoritenkunde. Stuttgart: Ferdinand Enke Verlag, 152 pp. (in German).Google Scholar
Muttik, N., Kirsimäe, K., Somelar, P. & Osinski, G. R. 2008. Post-impact alteration of surficial suevites in Ries crater, Germany: hydrothermal modification or weathering processes? Meteoritics and Planetary Science 43, 1827–40.Google Scholar
Naumov, M. V. 2005. Principal features of impact-generated hydrothermal circulation systems: mineralogical and geochemical evidence. Geofluids 5, 165–84Google Scholar
Newsom, H. E. & Hagerty, J. J. 2003. Limits of the presence of impact-induced hydrothermal alteration in small impact craters on the Earth: implications for the importance of small craters on Mars. Impact Cratering: Bridging the Gap between Modeling and Observations. Workshop on Impact Cratering, 7–9 February 2003, Houston, Texas, USA, abstract no. 8049, p. 51.Google Scholar
Nicolaysen, L. O. & Reimold, W. U. 1999. Vredefort shatter cones revisited. Journal of Geophysical Research 104, 4911–30Google Scholar
NTB 88-11. 1992. Nagra Technischer Bericht 88-11. Sonderbohrung Schafisheim. Untersuchungsbericht. Beilagenband. Nationale Genossenschaft für die Lagerung radioaktiver Abfälle (in German).Google Scholar
Osinski, G. R. 2005. Hydrothermal activity associated with the Ries impact event, Germany. Geofluids 5, 202–20.Google Scholar
Osinski, G. R. & Ferrière, L. 2016. Shatter cones: (mis)understood? Science Advances 2, e1600616, 9 pp. doi: 10.1126/sciadv.1600616.Google Scholar
Osinski, G. R., Tornabene, L. L., Banerjee, N. R., Cockell, C. S., Flemming, R., Izawa, M. R. M., McCutcheon, J., Parnell, J., Preston, L. J., Pickersgill, A. E., Pontefract, A., Sapers, H. M. & Southam, G. 2013. Impact-generated hydrothermal systems on Earth and Mars. Icarus 224, 347–63.Google Scholar
Pernicka, E. & Wasson, J. T. 1987. Ru, Re, OS, Pt and Au in iron meteorites. Geochimica et Cosmochimica Acta 51, 1717–26.Google Scholar
Pierazzo, E. & Melosh, H. J. 2000. Hydrocode modeling of oblique impacts: the fate of the projectile. Meteoritics and Planetary Science 35, 117–30.Google Scholar
Powell, B. N. 1971. Petrology and chemistry of mesosiderites-II. Silicate textures and compositions and metal-silicate relationships. Geochimica et Cosmochimica Acta 35, 534.Google Scholar
Reiff, W. 1976. The Steinheim Basin – a meteorite crater. Abstract Presented at the Symposium on Planetary Cratering Mechanics (13–17 September 1976, Flagstaff, Arizona, USA). LPI Contribution no. 259, pp. 112–14.Google Scholar
Reiff, W. 1977. The Steinheim Basin – an impact structure. In Impact and Explosion Cratering: Planetary and Terrestrial Implications; Proceedings of the Symposium on Planetary Cratering Mechanics, Flagstaff, Arizona, 13–17 September 1976 (eds Roddy, D. J., Pepin, R. O. & Merrill, R.), pp. 309–20. New York: Pergamon Press.Google Scholar
Reiff, W. 1988. Zur Gleichaltrigkeit der Einschlagskrater (Meteorkrater) Steinheimer Becken und Nördlinger Ries. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins 70, 383–97 (in German).Google Scholar
Reiff, W. 1992. Einschlagkrater kosmischer Körper auf der Erde. Stuttgarter Beiträge zur Naturkunde C 6, 2447 (in German).Google Scholar
Reiff, W. 2004. Geologische Karte von Baden-Württemberg 1:25000, 7326 Heidenheim, mit Erläuterungen. Baden-Württemberg: Landesamt für Geologie, Rohstoffe und Bergbau, 223 pp. (in German).Google Scholar
Roller, L. 1904. Die Bohnerzformation. Oder das Bohnerz und seine Entstehungsweise. Habilitationsschrift am Polytechnikum Zürich, 162 pp. (in German).Google Scholar
Sagy, A., Fineberg, J. & Reches, Z. 2004. Shatter cones: branched, rapid fractures formed by shock impact. Journal of Geophysical Research 109, 120.Google Scholar
Sagy, A., Reches, Z. & Fineberg, J. 2002. Dynamic fracture by large extraterrestrial impacts as the origin of shatter cones. Nature 418, 310–13.Google Scholar
Schmieder, M. & Buchner, E. 2009. Fe-Ni-Co sulfides from the Steinheim Basin, SW Germany: possible impactor traces (abstract #5073). Meteoritics and Planetary Science 44, A185.Google Scholar
Schmieder, M. & Buchner, E. 2010a. New insights into the Steinheim central uplift – part III: shatter cones and the ‘cone-in-cone’ problem reloaded. 73rd Annual Meeting of the Meteoritical Society (26–30 July 2010), New York, USA, abstract no. 5012.Google Scholar
Schmieder, M. & Buchner, E. 2010b: Possible iron meteoritic contamination in impact melt particles from the Steinheim Basin (Baden-Württemberg, Germany). 41st Lunar and Planetary Science Conference (1–5 March, 2010), The Woodlands, Texas, USA, abstract no. 2103.Google Scholar
Schmieder, M. & Buchner, E. 2013. Strahlenkegel in Opalinuston-Konkretionen des Steinheimer Beckens (Baden-Württemberg). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften (German Journal of Geology) 164, 503–13.Google Scholar
Schmieder, M. & Buchner, E. 2016. Discovery of possible meteoritic matter on shatter cones – 3. Marquez Dome, Texas, USA. 79th Annual Meeting of the Meteoritical Society (7–12 August 2016), Berlin, Germany, abstract no. 6029.Google Scholar
Schmieder, M., Chennaoui Aoudjehane, H., Buchner, E. & Tohver, E. 2015. Meteorite traces on a shatter cone surface from the Agoudal impact site, Morocco. Geological Magazine 152, 751–57.Google Scholar
Schmieder, M. & Jourdan, F. 2013. The Lappajärvi impact structure (Finland): age, duration of crater cooling, and implications for early life. Geochimica et Cosmochimica Acta 112, 321–39.Google Scholar
Schmieder, M., Trieloff, M., Schwarz, W. H., Buchner, E. & Jourdan, F. 2014. Supportive comment on: Morphology and population of binary asteroid impact craters by Miljković, K., Collins, G.S., Mannick, S., and Bland, P. A. 2013 [Earth Planet. Sci. Lett. 363:121–132]. Earth and Planetary Science Letters 405, 281–84.Google Scholar
Selles-Martinez, J. 1994. New insights into the origin of cone-in-cone structures. Carbonates and Evaporites 9, 172–86.Google Scholar
Seward, T. M. 1991. The hydrothermal geochemistry of gold. In Gold Metallogeny and Exploration (ed. Foster, P. R.), pp. 3762. Glasgow: Blackie.Google Scholar
Sharpton, V. L., Dressler, B. O., Herrick, R. R., Schnieders, B. & Scott, J. 1996. New constraints on the Slate islands impact structure, Ontario, Canada. Geology 24, 851–54.Google Scholar
Smales, A. A., Mapper, D. & Fouché, K. F. 1967. The distribution of some trace elements in iron meteorites, as determined by neutron activation. Geochimica et Cosmochimica Acta 31, 673–88.Google Scholar
Stöffler, D., Artemieva, N. A. & Pierazzo, E. 2002. Modeling the Ries-Steinheim impact event and the formation of the moldavite strewn field. Meteoritics and Planetary Science 37, 1893–907.Google Scholar
Tagle, R. & Hecht, L. 2006. Geochemical identification of projectiles in impact rocks. Meteoritics and Planetary Science 41, 1721–35.Google Scholar
Versh, E., Kirsimäe, K., Jõeleht, A. & Plado, J. 2005. Cooling of the Kärdla impact crater: I. The mineral paragenetic sequence observation. Meteoritics and Planetary Science 40, 319.Google Scholar
Wolf, S. F., Wang, M.-S. & Lipschutz, M. E. 2009. Labile trace elements in basaltic achondrites: can they distinguish between meteorites from the Moon, Mars, and V-type asteroids? Meteoritics and Planetary Science 44, 891903.Google Scholar
Xiao, X. & Lipschutz, M. E. 1992. Labile trace elements in carbonaceous chondrites: a survey. Journal of Geophysical Research: Planets 97, 10199–211.Google Scholar
Yue, Z., Johnson, B. C., Minton, D. A., Melosh, H. J., Di, K., Hu, W. & Liu, Y. 2013. Projectile remnants in central peaks of lunar impact craters. Nature Geoscience 6, 435–37.Google Scholar
Zhu, Y., An, F. & Tan, J. 2011. Geochemistry of hydrothermal gold deposits: a review. Geoscience Frontiers 3, 367–74.Google Scholar
Zürcher, L. & Kring, D. A. 2004. Hydrothermal alteration in the core of the Yaxcopoil-1 borehole, Chicxulub impact structure, Mexico. Meteoritics and Planetary Science 39, 1199–221.Google Scholar